HW 4

1. Assuming the expansion-along-the-first-row-or-first-column-property, state and prove the expansion-along-any-row-or-column-property for determinants.
2. Consider the vector space V of real polynomials of degree ≤ 2 and the linear map $D: V \rightarrow V$ given by $D p=p^{\prime}$. Write the matrices D_{1}, D_{2} of D in the ordered bases $1, x, x^{2}$ and $1, x+1, x^{2}+x$ respectively. Find an invertible matrix P such that $D_{2}=P^{-1} D_{1} P$.
3. Let $f_{1}, \ldots, f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions. Consider a real $n \times n$ matrix $A(x)$ whose first row is $\left[f_{1}(x) f_{2}(x) \ldots f_{n}(x)\right]$ and whose other rows are simply constant real numbers. Prove that the function $\operatorname{det}(A(x)): \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and that its derivative is $f_{1}^{\prime}(x) M_{11}-f_{2}^{\prime}(x) M_{12}+\ldots+(-1)^{n+1} f_{n}^{\prime}(x) M_{1 n}$ where $M_{i j}$ is the $i j^{\text {th }}$ minor.
4. If A is a square matrix, then prove that $p_{A}(\lambda)=\operatorname{det}(\lambda I-A)$ is a polynomial of degree n such that the coefficient of λ^{n-1} is $-\sum_{i} A_{i i}$. Prove that $\sum_{i} \lambda_{i}=\sum_{i} A_{i i}$ and that $\operatorname{det}(A)=\lambda_{1} \lambda_{2} \ldots$.
