HW 4

- 1. Assuming the expansion-along-the-first-row-or-first-column-property, state and prove the expansion-along-any-row-or-column-property for determinants.
- 2. Consider the vector space V of real polynomials of degree ≤ 2 and the linear map $D: V \to V$ given by Dp = p'. Write the matrices D_1, D_2 of D in the ordered bases $1, x, x^2$ and $1, x+1, x^2+x$ respectively. Find an invertible matrix P such that $D_2 = P^{-1}D_1P$.
- 3. Let $f_1, \ldots, f_n : \mathbb{R} \to \mathbb{R}$ be differentiable functions. Consider a real $n \times n$ matrix A(x) whose first row is $[f_1(x) \ f_2(x) \ \ldots \ f_n(x)]$ and whose other rows are simply constant real numbers. Prove that the function $\det(A(x)) : \mathbb{R} \to \mathbb{R}$ is differentiable and that its derivative is $f'_1(x)M_{11} f'_2(x)M_{12} + \ldots + (-1)^{n+1}f'_n(x)M_{1n}$ where M_{ij} is the ij^{th} minor.
- 4. If A is a square matrix, then prove that $p_A(\lambda) = \det(\lambda I A)$ is a polynomial of degree n such that the coefficient of λ^{n-1} is $-\sum_i A_{ii}$. Prove that $\sum_i \lambda_i = \sum_i A_{ii}$ and that $\det(A) = \lambda_1 \lambda_2 \dots$