HW 5

1. Let $w(t):(a, b) \rightarrow \mathbb{C}$ be a function such that $w(t)=u(t)+\sqrt{-1} v(t)$ where $u, v:$ $(a, b) \rightarrow \mathbb{R}$ are differentiable. We then say that $w(t)$ is differentiable and $w^{\prime}=$ $u^{\prime}+\sqrt{-1} v^{\prime}$. Prove that if $w_{1}(t), w_{2}(t)$ are two such differentiable complex-valued functions, then so is $w_{1}(t) w_{2}(t)$ and its derivative is $w_{1}^{\prime} w_{2}+w_{1} w_{2}^{\prime}$. Prove that if $w_{2} \neq 0$, then $\frac{w_{1}}{w_{2}}$ is differentiable and its derivative is $\frac{w_{1}^{\prime} w_{2}-w_{2}^{\prime} w_{1}}{w_{2}^{2}}$. If $g:(a, b) \rightarrow(a, b)$ is differentiable, then prove that $w(g(t))$ is also differentiable and its derivative is $w^{\prime}(g(t)) g^{\prime}(t)$.
2. This problem tells you what to do if the matrix (of a linear system of ODE) is not diagonalisable:
Let $P \in \mathbb{R}$ be a constant. Let $A=\left[\begin{array}{cc}-P & \frac{-P^{2}}{4} \\ 1 & 0\end{array}\right]$.
(a) Prove that $\lambda=-\frac{P}{2}$ is the only eigenvalue and its eigenspace is one-dimensional.
(b) Let u be an eigenvector of $-\frac{P}{2}$ and let v be one of e_{1}, e_{2} such that u, v form a basis. Prove that in this basis, A is upper-triangular.
(c) Now solve $\frac{d \vec{y}}{d t}=A \vec{y}$ on \mathbb{R} and prove that the solution space is a two-dimensional real vector space spanned by $e^{\lambda t}$ and $t e^{\lambda t}$.
3. If $U \subset \mathbb{R}^{m}$ and $V \subset \mathbb{R}^{n}$ are open, then prove that $U \times V \subset \mathbb{R}^{n+m}$ is open.
4. In each of the following cases, prove (or disprove):
(a) If A_{i} are infinitely many open sets, then their intersection $\cap_{i} A_{i}$ is open.
(b) If A_{i} are infinitely many closed sets, then their intersection $\cap_{i} A_{i}$ is closed.
(c) The set $\left\{(x, y, z) \in \mathbb{R}^{3}| | x+y|<1,|z|<1\}\right.$ is open.
5. Prove that a set S is closed if and only if $S=\operatorname{Int}(S) \cup \partial S$.
6. If $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L$ exists, and $\lim _{x \rightarrow a} f(x, y), \lim _{y \rightarrow b} f(x, y)$ exist, then prove that $\lim _{x \rightarrow a} \lim _{y \rightarrow b} f(x, y)=\lim _{y \rightarrow b} \lim _{x \rightarrow a} f(x, y)=L$.
7. Let $f(x, y)=x \sin (1 / y)$ if $y \neq 0$ and $f(x, 0)=0$. Show that $f(x, y) \rightarrow 0$ as $(x, y) \rightarrow(0,0)$ but $\lim _{x \rightarrow 0} \lim _{y \rightarrow 0} f(x, y) \neq \lim _{y \rightarrow 0} \lim _{x \rightarrow 0} f(x, y)$. Why does this not contradict the earlier result?
