HW 6

- 1. (a) Prove that there is no scalar field f such that $\nabla_{\vec{v}} f(\vec{a}) > 0$ for a fixed vector \vec{a} and every non-zero vector \vec{v} .
 - (b) Give an example of a scalar field f such that $\nabla_{\vec{v}} f(\vec{a}) > 0$ for a fixed vector \vec{v} and every vector \vec{a} .
- 2. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function. Prove that $\lim_{\vec{r}\to\vec{a}} f(\vec{r})$ exists and equals L if and only if for any sequence $\vec{r_n} \to \vec{a}$ with $\vec{r_n} \neq \vec{a} \forall n$ (meaning that the components converge individually to the respective components of \vec{a}), the sequence $f(\vec{r_n})$ converges to L.
- 3. Prove that $\nabla_{\vec{v}} f(a, b)$ exists for all \vec{v}, a, b and is linear in \vec{v} for $f(x, y) = \frac{x^3 y}{x^4 + y^2}$ for $(x, y) \neq (0, 0)$ and f(0, 0) = 0. Also prove that f is continuous everywhere.