HW 6

1. (a) Prove that there is no scalar field f such that $\nabla_{\vec{v}} f(\vec{a})>0$ for a fixed vector \vec{a} and every non-zero vector \vec{v}.
(b) Give an example of a scalar field f such that $\nabla_{\vec{v}} f(\vec{a})>0$ for a fixed vector \vec{v} and every vector \vec{a}.
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function. Prove that $\lim _{\vec{r} \rightarrow \vec{a}} f(\vec{r})$ exists and equals L if and only if for any sequence $\vec{r}_{n} \rightarrow \vec{a}$ with $\vec{r}_{n} \neq \vec{a} \forall n$ (meaning that the components converge individually to the respective components of \vec{a}), the sequence $f\left(\vec{r}_{n}\right)$ converges to L.
3. Prove that $\nabla_{\vec{v}} f(a, b)$ exists for all \vec{v}, a, b and is linear in \vec{v} for $f(x, y)=\frac{x^{3} y}{x^{4}+y^{2}}$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. Also prove that f is continuous everywhere.
