HW 7

1. Let $f(x, y)=3 x^{2}+y^{2}$. Why is f differentiable on \mathbb{R}^{2} ? Find the points (x, y) and the directions for which the directional derivative of $f(x, y)$ has the largest value if the points (x, y) are restricted to lie on the circle $x^{2}+y^{2}=1$.
2. Prove that $f(x, y)=\tan \left(x^{2}+y^{2}+\frac{\pi}{2}\right)$ when $0<x^{2}+y^{2}<1$ and $f(0,0)=0$ is differentiable everywhere on $x^{2}+y^{2}<1$ except at $(0,0)$ (where you need to prove that it is not differentiable). Calculate its total derivative linear map at the point $\left(\frac{1}{2}, \frac{1}{2}\right)$.
3. A differentiable path is a vector-valued function $\vec{r}(t):(a, b) \subset \mathbb{R} \rightarrow \mathbb{R}^{n}$. A regular path is one whose velocity $\vec{r}(t) \neq 0$ for all $t \in(a, b)$. A curve is the range of a path, i.e., a curve is a subset of \mathbb{R}^{n}. Suppose $\vec{u}(\tau):(c, d) \rightarrow \mathbb{R}^{n}$ is another path such that it is a reparametrisation of $\vec{r}(t)$, i.e., $\tau(t):(a, b) \rightarrow(c, d)$ is 1-1 onto continuously differentiable function such that its inverse is also continuously differentiable, $\tau^{\prime}(t)>0$ everywhere, and $\vec{u}(\tau(t))=\vec{r}(t)$. Firstly, prove that the ranges of the paths, i.e., the curves are the same curve C. Prove that the directional derivative along C, i.e., $\frac{d f}{d s}$ is the same at any point $\left(x_{0}, y_{0}\right)$ on C. In other words, $\frac{d f}{d s}$ is a property of the curve (the geometric object) and not of any particle moving on it.
4. Find a constant c so that at any point of intersection of the two spheres, $(x-c)^{2}+$ $y^{2}+z^{2}=3$ and $x^{2}+(y-1)^{2}+z^{2}=1$, the corresponding tangent planes will be perpendicular to each other.
5. Prove that if \vec{a} is a point on a non-empty regular level set $f=c$ (where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{1} function), the following hold.
(a) The subspace of all \vec{v} satisfying $\langle\nabla f(\vec{a}), \vec{v}\rangle=0$ is $n-1$-dimensional.
(b) For every vector \vec{v} such that $\langle\nabla f(\vec{a}), \vec{v}\rangle=0$, there is a C^{1} path $\vec{r}:(-1,1) \rightarrow \mathbb{R}^{n}$ such that $f(\vec{r}(t))=c \forall t, \vec{r}(0)=\vec{a}$ and $\vec{r}(0)=\vec{v}$.
