HW 8

1. Prove that a vector field \vec{F} is differentiable at a point \vec{a} if and only if its component scalar fields are so. Moreover, prove that $\nabla_{\vec{v}} \vec{F}=\left(\nabla_{\vec{v}} F_{1}, \ldots\right)$.
2. Find a constant c so that at any point of intersection of the two spheres, $(x-c)^{2}+$ $y^{2}+z^{2}=3$ and $x^{2}+(y-1)^{2}+z^{2}=1$, the corresponding tangent planes will be perpendicular to each other.
3. Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a C^{2} function. Let $x=r \cos (\theta), y=r \sin (\theta)$ where $0<r<\infty, 0<\theta<2 \pi$. Prove that $\vec{g}(r, \theta)=(x, y)$ is a C^{2} function, that the composition $h(r, \theta)=f(x(r, \theta), y(r, \theta))$ is C^{2}, and that $f_{x x}+f_{y y}=f_{r r}+\frac{1}{r} f_{r}+\frac{1}{r^{2}} f_{\theta \theta}$.
4. Let $f(x, y)=\int_{0}^{\sqrt{x y}} e^{-t^{2}} d t$ for $x>0, y>0$. Prove that f is differentiable and compute f_{x} in terms of x, y.
5. Find the global maxima and global minima of $f(x, y)=x^{3}-3 x y$ on $|x|+|y| \leq 1$.
