HW 8

- 1. Prove that a vector field \vec{F} is differentiable at a point \vec{a} if and only if its component scalar fields are so. Moreover, prove that $\nabla_{\vec{v}}\vec{F} = (\nabla_{\vec{v}}F_1, \ldots)$.
- 2. Find a constant c so that at any point of intersection of the two spheres, $(x-c)^2 + y^2 + z^2 = 3$ and $x^2 + (y-1)^2 + z^2 = 1$, the corresponding tangent planes will be perpendicular to each other.
- 3. Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ is a C^2 function. Let $x = r\cos(\theta)$, $y = r\sin(\theta)$ where $0 < r < \infty, 0 < \theta < 2\pi$. Prove that $\vec{g}(r,\theta) = (x,y)$ is a C^2 function, that the composition $h(r,\theta) = f(x(r,\theta), y(r,\theta))$ is C^2 , and that $f_{xx} + f_{yy} = f_{rr} + \frac{1}{r}f_r + \frac{1}{r^2}f_{\theta\theta}$.
- 4. Let $f(x,y) = \int_0^{\sqrt{xy}} e^{-t^2} dt$ for x > 0, y > 0. Prove that f is differentiable and compute f_x in terms of x, y.
- 5. Find the global maxima and global minima of $f(x, y) = x^3 3xy$ on $|x| + |y| \le 1$.