
1 Recap

• Recalled the definition of a vector space V over a field F (usually reals or complex
numbers). By the way, using induction and associativity,

∑n
i=1 civi can be defined

unambiguously.

• Subspaces and the linear span of a set.

• Finite-dimensional vector spaces, dimension, and the notion of a basis.

• Ordered bases and components.

2 Linear Transformations/Maps

Recall that one of the aims of defining vector spaces was to solve linear equations in
general. Often, this involves adding/subtracting to get “new variables” that can be
solved for. Moreover, given two vector spaces, are they the same vector space in dis-
guise ? ( Is Voldemort being called Tom Riddle ?) To this end, we neeed to define
maps/functions/transformations between vector spaces that preserve the vector space
structure. Recall that if V,W are vector spaces (over the same field), then a func-
tion T : V → W is called a linear transformation/linear map if T (av) = aT (v) for all
a ∈ F, v ∈ V and T (v +w) = T (v) +T (w) or alternatively, T (av + bw) = aT (v) + bT (w).
So T (0) = T (0.v) = 0.T (v) = 0.
The image T (V ) is a subspace of W : If T (v), T (w) ∈ T (V ), then aT (v) + bT (w) =
T (av + bw) ∈ T (V ). T (

∑
i civi) =

∑
i T (civi): We prove by induction. For n = 1, it

follows from definition. Assume truth for n. For n + 1, T (
∑n+1

i=1 civi) = T (
∑n

i=1 civi +
cn+1vn+1) =

∑n
i=1 ciT (vi) + cn+1T (vn+1).

Examples and Non-examples of Linear Transformations:

• If V = Rn,W = Rm, and A is an m×n real matrix, then T (x) = Ax, i.e, (T (x))i =∑
j Aijxj is a linear map. ( In fact, all linear maps between these particular V and

W arise this way.) However, T (x) = Ax + b is NOT linear.

• If V is the space of continuous f : [0, 1] → R and W = R, then T (f) =
∫ 1

0
f(x)dx

is a linear map. However,
∫ 1

0
f 2dx is NOT linear.

• If V is the space of real polynomials of degree ≤ 5 and W = R, then T (p) = p(0)
is a linear map. ( It is called an evaluation map.)

3 Algebraic operations on Linear maps

If V,W are vector spaces over the same field, T,H : V → W are linear maps, then T +H
is linear and so is cT for all c ∈ F. One can verify that the set of all linear maps L(V,W )
forms a vector space in its own right. If V,W,X are vector spaces, and T : V → W ,
U : W → X are linear maps, then U ◦ T : V → X is linear. R(ST ) = (RS)T , i.e.,
associativity holds. Moreover, (R + S)T = RT + ST and R(S + T ) = RS + RT .
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4 Linear maps and matrices for finite-dimensional

vector spaces

Given ordered bases e1, . . . , en for V and f1, . . . , fm for W , T (
∑

k ckek) =
∑

k ckT (ek) and
hence it is enough to know what T (ek) are. Let T (ek) =

∑
j Tjkfj. Then T (

∑
k ckek) =∑

k ck
∑

j Tjkfj =
∑

j(
∑

k Tjkck)fj.
The matrix Tjk determines T and vice-versa. The components ck, if represented by a col-
umn vector (as is usually the case), go to a new component-column-vector dj as d = [T ]c.
So to link linear maps and matrices, one needs to choose ordered bases for both, the
image AND the target. Different choices of ordered bases give rise to different matrices
representing the same linear map.

Examples of matrix-representation of linear maps

• The algorithm is as follows : The first column of the matrix is obtained by calcu-
lating T (e1) and writing its components as a column vector in the given ordered
basis of the target. Likewise for the other columns.

• So if we consider the differentiation linear map from degree≤ 2 polynomials to
itself with an ordered basis {1, x, x2}, T (1) = 0 = 0.1 + 0.x + 0.x2, T (x) = 1 =
1.1 + 0.x + 0.x2, and T (x2) = 2x = 0.1 + 2.x + 0.x2.

• Thus the matrix is [T ] =

 0 1 0
0 0 2
0 0 0


Matrix operations:

If A,B are two m × n matrices with entries in F, then [A + B]ij := [A]ij + [B]ij and if
c ∈ F, then [cA]ij := c[A]ij.
If we choose ordered bases {ei}, {fj}, {gk} for f.d vector spaces V,W,X, and if T : V → W ,
U : W → X are linear maps, then then we get two matrices [T ] and [U ] representing
the maps. It turns out that U ◦ T is represented by [U ][T ] where multiplication is in
the sense of matrix multiplication, i.e., ([A][B])ij =

∑
k[A]ik[B]kj : Indeed, U(T (ei)) =

U(
∑

j Tjifj) =
∑

j TjiU(fj) =
∑

j Tji

∑
k Ukjgk =

∑
j,k UkjTjigk. In fact, matrix multipli-

cation is defined so that this happens.

Properties of matrix multiplication:

• A(BC) = (AB)C whenever it makes sense.

• (A + B)C = AC + BC and C(A + B) = CA + CB whenever it makes sense.

• The simplest proof is to interpret each of the matrices as linear maps between
appropriate vector spaces and use the fact that [U ◦ T ] = [U ][T ].

Null space/Kernel of a linear map: Suppose we consider the equation 2x + 3y = 1.
How many solutions does it have ? Infinitely many. What about 2x+3y = 1, 4x+6y = 3
? Zero. What about 2x + 3y = 1, 4x + 6y = 2 ? Infinitely many. What about 2x + 3y =
1, x − y = 0 ? Exactly one. More generally, T : V → W need not be surjective or

2



injective. Suppose T (v) = w. How many solutions does this equation have if it has one ?
Note that if T (v1) = T (v2) = w, then T (v1 − v2) = 0. Motivated by this observation, we
define the null space N(T ) ⊂ V as the set v ∈ V so that T (v) = 0. If T (v) = T (w) = 0,
then T (av + bw) = aT (v) + bT (w) = 0 and hence N(T ) is a subspace of V .
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