1 Recap

e Positive-definiteness.

e Cauchy-Schwarz inequality, norms.

2 Orthogonality

In R2, the basis i, j is special because 7. = 7.7 = 1 and 7.7 = 0. Thus v.w = vyw; + Vows.
Motivated by this observation, we defined the notion of Orthogonality: In an inner prod-
uct space V, v,w € V are said to be orthogonal to each other if (v,w) = 0. A subset
S C V is said to be orthogonal if any pair of distinct elements are orthogonal to each
other. A subset S C V is said to be orthonormal if it is orthogonal and each element has
unit norm.

An important result is: In an inner product space (V, (,)), an orthogonal set of nonzero
elements is linearly independent. In particular, if V' is f.d with dim (V') = n, any orthog-
onal set of nonzero elements of size n forms a basis.

Proof: Suppose ), cyvrx = 0 where v, € S. Then (), cpvp,v) = 0 = >, cx(vg, vr).
Thus, ¢||v]|> = 0 and hence ¢; = 0 for all [. O
Examples and non-examples:

e The 0 vector is orthogonal to every vector. ( As we shall see, it is the only vector
with such properties. If we do not require positivity for all vectors in the inner
product, then this property is false. Such “non-positive inner products” are useful
in Relativity.)

e The standard basis vectors in R", C™ with the usual inner products are orthonormal
bases.

e The elements e***

in the space of continuous complex-valued functions on [0, 27]
are orthogonal under the integration inner product. Alternatively, ug = 1, ug9,_1 =
cos(nx), uz, = sin(nx) are orthogonal but not orthonormal. Instead, 2, ¥& are

orthonormal.
e The set {1,x,2?} is not orthogonal under the integration inner product.

Let V be a f.d. inner product space of dim n (over R or C as usual). Suppose ey, ..., e,

is an orthogonal basis. Then the components of a vector x = ), crey, are: ¢; = %
VRE]

particular, if e; are orthonormal, then ¢; = (x, e;).
Proof: (z,e;) =, cr(ex, ej) = cjlej, ). O
In other words, on f.d. space with an orthonormal basis, * = ), (z,ex)er. Let V
be a f.d. inner product space and ey,...,e, is an orthonormal basis. Then (z,y)

o (T, ex)(y, er). In particular, ||z]|* = Y7 [(z,€;)|*. The proof is straightforward.

It turns out that in a certain function space (larger than continuous functions), e*** form
an orthonormal “basis” of sorts. The analogue of the theorem above was discovered by
Fourier and Parseval. It forms the basis for Fourier’s technique of solving certain differ-

ential equations.



3 Gram-Schmidt algorithm /procedure/process

Suppose in R? we were given (1,1) and (1,2) as a basis. If we were asked to construct
an orthonormal basis, what would we have done ? Of course, we would have replaced
(1,2) with the piece that is orthogonal to (1,1). This idea leads to the Gram-Schmidt
procedure:

Let x1,... be a finite or infinite sequence of vectors in (V, (,)). Let L(xy,...,z%) be the
span of the first k& elements. Then there is another collection ¥y, ..., in V' such that

e y; is orthogonal to every element in L(y,...,yx_1).

o Lyr,- o) = Ll oy a).
e The sequence vy, . .. satisfying the above properties is unique upto scaling factors.

An example:
On the real vector space of say, continuous real-valued functions on [—1, 1], define the
inner product (f,g) = f_ll f(t)g(t)dt. Consider the linearly independent set {z; = t"}.
As we saw earlier, this set is not orthogonal. Let’s apply the GS procedure to this set
to get an orthogonal set yo,y; .... The resulting polynomials (upto scaling factors) were
obtained by earlier by Legendre in the context of differential equations. The (scaled ver-
sions) of these polynomials are called Legendre polynomials.

The polynomials ¢,, = m are orthonormal and called the normalised Legendre polyno-
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mials. Here are a few : yo =29 =1. y1 = 21 —
1

3
More generally, it turns out that y, = N G N 9 Legendre polynomials are

(2n)! dtm
2n)!
Pn(t) = 27(1(,3)2 yn<t)

which equals t? — 0 —
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