
1 Recap

• Positive-definiteness.

• Cauchy-Schwarz inequality, norms.

2 Orthogonality

In R2, the basis î, ĵ is special because î.̂i = ĵ.ĵ = 1 and î.ĵ = 0. Thus v.w = v1w1 + v2w2.
Motivated by this observation, we defined the notion of Orthogonality : In an inner prod-
uct space V , v, w ∈ V are said to be orthogonal to each other if 〈v, w〉 = 0. A subset
S ⊆ V is said to be orthogonal if any pair of distinct elements are orthogonal to each
other. A subset S ⊆ V is said to be orthonormal if it is orthogonal and each element has
unit norm.
An important result is: In an inner product space (V, 〈, 〉), an orthogonal set of nonzero
elements is linearly independent. In particular, if V is f.d with dim(V ) = n, any orthog-
onal set of nonzero elements of size n forms a basis.
Proof: Suppose

∑
k ckvk = 0 where vk ∈ S. Then 〈

∑
k ckvk, vl〉 = 0 =

∑
k ck〈vk, vl〉.

Thus, cl‖vl‖2 = 0 and hence cl = 0 for all l.
Examples and non-examples:

• The 0 vector is orthogonal to every vector. ( As we shall see, it is the only vector
with such properties. If we do not require positivity for all vectors in the inner
product, then this property is false. Such “non-positive inner products” are useful
in Relativity.)

• The standard basis vectors in Rn,Cn with the usual inner products are orthonormal
bases.

• The elements eikx in the space of continuous complex-valued functions on [0, 2π]
are orthogonal under the integration inner product. Alternatively, u0 = 1, u2n−1 =
cos(nx), u2n = sin(nx) are orthogonal but not orthonormal. Instead, u0√

2π
, un√

π
are

orthonormal.

• The set {1, x, x2} is not orthogonal under the integration inner product.

Let V be a f.d. inner product space of dim n (over R or C as usual). Suppose e1, . . . , en
is an orthogonal basis. Then the components of a vector x =

∑
k ckek are: cj =

〈x,ej〉
〈ej ,ej〉 . In

particular, if ej are orthonormal, then cj = 〈x, ej〉.
Proof: 〈x, ej〉 =

∑
j ck〈ek, ej〉 = cj〈ej, ej〉.

In other words, on f.d. space with an orthonormal basis, x =
∑

k〈x, ek〉ek. Let V
be a f.d. inner product space and e1, . . . , en is an orthonormal basis. Then 〈x, y〉 =∑

k〈x, ek〉〈y, ek〉. In particular, ‖x‖2 =
∑n

i=1 |〈x, ei〉|2. The proof is straightforward.
It turns out that in a certain function space (larger than continuous functions), eikx form
an orthonormal “basis” of sorts. The analogue of the theorem above was discovered by
Fourier and Parseval. It forms the basis for Fourier’s technique of solving certain differ-
ential equations.
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3 Gram-Schmidt algorithm/procedure/process

Suppose in R2, we were given (1, 1) and (1, 2) as a basis. If we were asked to construct
an orthonormal basis, what would we have done ? Of course, we would have replaced
(1, 2) with the piece that is orthogonal to (1, 1). This idea leads to the Gram-Schmidt
procedure:
Let x1, . . . be a finite or infinite sequence of vectors in (V, 〈, 〉). Let L(x1, . . . , xk) be the
span of the first k elements. Then there is another collection y1, . . . , in V such that

• yk is orthogonal to every element in L(y1, . . . , yk−1).

• L(y1, . . . , yk) = L(x1, . . . , xk).

• The sequence y1, . . . satisfying the above properties is unique upto scaling factors.

An example:
On the real vector space of say, continuous real-valued functions on [−1, 1], define the

inner product 〈f, g〉 =
∫ 1

−1 f(t)g(t)dt. Consider the linearly independent set {xt = tn}.
As we saw earlier, this set is not orthogonal. Let’s apply the GS procedure to this set
to get an orthogonal set y0, y1 . . .. The resulting polynomials (upto scaling factors) were
obtained by earlier by Legendre in the context of differential equations. The (scaled ver-
sions) of these polynomials are called Legendre polynomials.
The polynomials φn = yn

‖yn‖ are orthonormal and called the normalised Legendre polyno-

mials. Here are a few : y0 = x0 = 1. y1 = x1 −
∫ 1
−1 x1x0∫ 1
−1 x

2
0

= t. y2 = x2 −
∫ 1
−1 x2y1∫ 1
−1 y

2
1

−
∫ 1
−1 x2y0∫ 1
−1 y

2
0

which equals t2 − 0− 1
3
.

More generally, it turns out that yn = n!
(2n)!

dn(t2−1)n
dtn

. The Legendre polynomials are

Pn(t) = (2n)!
2n(n!)2

yn(t).
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