
1 Recap

• Orthogonality, orthonormal bases.

• Gram-Schmidt procedure (example).

2 Proof of GS

The proof of properties (a), (b) is by constructing the yi inductively/recursively. Taking
cue from the R2 example, let y1 = x1. ( Caveat: x1 and hence y1 is allowed to be 0.)
Define y2 as x2 − ax1 for some, as of now, undetermined a ∈ F. Note that y2 + ay1 = x2

and hence L(x1, x2) = L(y1, y2) (Why ?)
We want y2 to be orthogonal to L(y1) = L(x1) = {cx1 | c ∈ F}. Thus 0 = 〈y2, cy1〉 =
c〈y2, y1〉. This happens if and only if 0 = 〈y2, x1〉 = 〈x2, x1〉 − a〈x1, x1〉. If x1 = 0, define

y2 = x2. Otherwise, a = 〈x2,x1〉
〈x1,x1〉 . For y3, as before, we define y3 = x3 − a1y1 − a2y2. Then

0 = 〈y3, y1〉 = 〈x3, y1〉 − a1〈y1, y1〉. Likewise, 0 = 〈y3, y2〉 = 〈x3, y2〉 − a2〈y2, y2〉. If yi = 0,

define ai = 0. If not, ai = 〈x3,yi〉
〈yi,yi〉 .

Proof of (a), (b): We see a pattern. Assume that y1, . . . , yk have been defined satis-
fying the first two properties. Define yk+1 = xk+1 −

∑
i aiyi where ai = 0 if yi = 0 and

ai = 〈xk+1,yi〉
〈yi,yi〉 . Therefore, yk+1 is orthogonal to each of the yi and hence to L(y1, y2, . . . , yk).

Therefore, the first property is met by yk+1. The second property is a HW exercise.
Proof of (c): Now we prove property (c) by induction again. The case k = 1 is easy
because L(y′1) = L(x1) implies that y′1 = cx1 = cy1. Assume truth for k, i.e., y′i = ciyi.
We shall prove for k + 1. Suppose we have an element y′k+1 satisfying both proper-
ties, i.e., y′k+1 is orthogonal to L(y1, . . . , yk) = L(y′1, y

′
2, . . .) and L(y′1, y

′
2, . . . , y

′
k+1) =

L(y1, y2, . . . , yk+1) = L(x1, x2, . . . , xk+1). By the second property, y′k+1 =
k+1∑
i=1

aiyi =

z + ak+1yk+1 where z ∈ L(y′1, y
′
2, . . . , y

′
k) = L(y1, . . . , yk) = L(x1, . . . , xk).

By the first property, 0 = 〈y′k+1, z〉 = 〈z, z〉+ 0. Hence z = 0. We are done.

3 More on Gram-Schmidt

Suppose in the above procedure, yi+1 = 0 for some i. Then xi+1 ∈ L(x1, . . . , xi) and
therefore x1, . . . , xi+1 are linearly dependent. As a consequence, if x1, . . . , xn are linearly
independent, then none of the yi are 0 and since they are mutually orthogonal, they
are linearly independent too. Thus, every finite-dimensional inner product space has an
orthogonal basis. By dividing each element by its norm, we can convert an orthogonal
basis to an orthonormal basis.

4 Orthogonal complement

Let S ⊆ V be a subset of an inner product space. An element v ∈ V is said to be
orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is
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denoted as S⊥.
S⊥ is always a subspace regardless of whether S is or not (HW). When S is a subspace,
S⊥ is called the orthogonal complement of S.
Examples :

• The perpendicular subspace to the set {(1, 1), (1, 2)} in R2 with the usual inner
product is {(0, 0)}. Indeed, (a, b).(1, 1) = a + b = 0 and (a, b).(1, 2) = a + 2b = 0
imply that a = b = 0.

• Given a line t(1, 2, 3) in R3, its orthogonal complement is a plane: 0 = (x, y, z).(1, 2, 3) =
x + 2y + 3z.

• The continuous functions orthogonal to 1 with the integration inner product on
[0, 1] are the ones with zero average.

5 Orthogonal decomposition

Recall how we used (1, 1) and (1, 2) to create orthogonal vectors. Motivated by this
construction, we have a theorem:
Let (V, 〈, 〉) be an inner product space and S ⊆ V be a f.d. subspace. Then every element
x ∈ V can be represented uniquely as a sum x = s + s⊥ where s ∈ S and s⊥ ∈ S⊥.
Moreover, ‖x‖2 = ‖s‖2 + ‖s⊥‖2.
Caveat: If S is not f.d., the above result is NOT true in general!
Proof: Let e1, . . . , en be an orthonormal basis of S. Define s =

∑
i〈x, ei〉ei. Clearly, s ∈ S.

Let s1 ∈ S be an arbitrary element. Then s1 =
∑

j cjej. 〈x − s, s1〉 =
∑

j c̄j〈x, ej〉 −∑
j,k c̄j〈x, ei〉〈ei, ej〉. By orthonormality, the latter is

∑
j c̄j〈x, ej〉 −

∑
j c̄j〈x, ej〉 = 0.

Hence, s⊥ = x − s ∈ S⊥. If x = t + t⊥ = s + s⊥, then t− s = s⊥ − t⊥ ∈ S ∩ S⊥ = {0}.
‖x‖2 = ‖s‖2 + ‖s⊥‖2 + 〈s, s⊥〉+ 〈s⊥, s〉 but 〈s, s⊥〉 = 0. The
element s =

∑
i〈x, ei〉ei is called the orthogonal projection of x on the (f.d.) subspace S.

It is basically the “shadow” of x on S.

6 The approximation problem

Consider the following questions:

• What is the best way to approximate continuous functions using sines and cosines
?

• What is the best way to approximate continuous functions using polynomials ?

• If we plot the price of houses vs their area (in a particular locality) what is the
“best” estimate of price per square foot ?
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