1 Recap

- Orthogonality, orthonormal bases.
- Gram-Schmidt procedure (example).

2 Proof of GS

The proof of properties (a), (b) is by constructing the y_i inductively/recursively. Taking cue from the \mathbb{R}^2 example, let $y_1 = x_1$. (Caveat: x_1 and hence y_1 is allowed to be 0.) Define y_2 as $x_2 - ax_1$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_2 + ay_1 = x_2$ and hence $L(x_1, x_2) = L(y_1, y_2)$ (Why ?)

We want y_2 to be orthogonal to $L(y_1) = L(x_1) = \{cx_1 \mid c \in \mathbb{F}\}$. Thus $0 = \langle y_2, cy_1 \rangle = c \langle y_2, y_1 \rangle$. This happens if and only if $0 = \langle y_2, x_1 \rangle = \langle x_2, x_1 \rangle - a \langle x_1, x_1 \rangle$. If $x_1 = 0$, define $y_2 = x_2$. Otherwise, $a = \frac{\langle x_2, x_1 \rangle}{\langle x_1, x_1 \rangle}$. For y_3 , as before, we define $y_3 = x_3 - a_1y_1 - a_2y_2$. Then $0 = \langle y_3, y_1 \rangle = \langle x_3, y_1 \rangle - a_1 \langle y_1, y_1 \rangle$. Likewise, $0 = \langle y_3, y_2 \rangle = \langle x_3, y_2 \rangle - a_2 \langle y_2, y_2 \rangle$. If $y_i = 0$, define $a_i = 0$. If not, $a_i = \frac{\langle x_3, y_i \rangle}{\langle y_i, y_i \rangle}$.

Proof of (a), (b): We see a pattern. Assume that y_1, \ldots, y_k have been defined satisfying the first two properties. Define $y_{k+1} = x_{k+1} - \sum_i a_i y_i$ where $a_i = 0$ if $y_i = 0$ and $a_i = \frac{\langle x_{k+1}, y_i \rangle}{\langle y_i, y_i \rangle}$. Therefore, y_{k+1} is orthogonal to each of the y_i and hence to $L(y_1, y_2, \ldots, y_k)$. Therefore, the first property is met by y_{k+1} . The second property is a HW exercise. Proof of (c): Now we prove property (c) by induction again. The case k = 1 is easy because $L(y'_i) = L(x_i)$ implies that $y'_i = cx_i = cy_i$. Assume truth for k i.e. $y'_i = cy_i$.

because $L(y'_1) = L(x_1)$ implies that $y'_1 = cx_1 = cy_1$. Assume truth for k, i.e., $y'_i = c_i y_i$. We shall prove for k + 1. Suppose we have an element y'_{k+1} satisfying both properties, i.e., y'_{k+1} is orthogonal to $L(y_1, \ldots, y_k) = L(y'_1, y'_2, \ldots)$ and $L(y'_1, y'_2, \ldots, y'_{k+1}) = L(y_1, y_2, \ldots, y_{k+1}) = L(x_1, x_2, \ldots, x_{k+1})$. By the second property, $y'_{k+1} = \sum_{i=1}^{k+1} a_i y_i =$

 $z + a_{k+1}y_{k+1}$ where $z \in L(y'_1, y'_2, \dots, y'_k) = L(y_1, \dots, y_k) = L(x_1, \dots, x_k)$. By the first property, $0 = \langle y'_{k+1}, z \rangle = \langle z, z \rangle + 0$. Hence z = 0. We are done.

3 More on Gram-Schmidt

Suppose in the above procedure, $y_{i+1} = 0$ for some *i*. Then $x_{i+1} \in L(x_1, \ldots, x_i)$ and therefore x_1, \ldots, x_{i+1} are linearly dependent. As a consequence, if x_1, \ldots, x_n are linearly independent, then none of the y_i are 0 and since they are mutually orthogonal, they are linearly independent too. Thus, every finite-dimensional inner product space has an orthogonal basis. By dividing each element by its norm, we can convert an orthogonal basis to an orthonormal basis.

4 Orthogonal complement

Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is

denoted as S^{\perp} .

 S^{\perp} is always a subspace regardless of whether S is or not (HW). When S is a subspace, S^{\perp} is called the *orthogonal complement* of S. Examples :

- The perpendicular subspace to the set $\{(1,1), (1,2)\}$ in \mathbb{R}^2 with the usual inner product is $\{(0,0)\}$. Indeed, (a,b).(1,1) = a + b = 0 and (a,b).(1,2) = a + 2b = 0 imply that a = b = 0.
- Given a line t(1, 2, 3) in \mathbb{R}^3 , its orthogonal complement is a plane: $0 = (x, y, z) \cdot (1, 2, 3) = x + 2y + 3z$.
- The continuous functions orthogonal to 1 with the integration inner product on [0, 1] are the ones with zero average.

5 Orthogonal decomposition

Recall how we used (1,1) and (1,2) to create orthogonal vectors. Motivated by this construction, we have a theorem:

Let (V, \langle, \rangle) be an inner product space and $S \subseteq V$ be a f.d. subspace. Then every element $x \in V$ can be represented uniquely as a sum $x = s + s^{\perp}$ where $s \in S$ and $s^{\perp} \in S^{\perp}$. Moreover, $||x||^2 = ||s||^2 + ||s^{\perp}||^2$.

Caveat: If S is not f.d., the above result is NOT true in general!

Proof: Let e_1, \ldots, e_n be an orthonormal basis of S. Define $s = \sum_i \langle x, e_i \rangle e_i$. Clearly, $s \in S$. Let $s_1 \in S$ be an arbitrary element. Then $s_1 = \sum_j c_j e_j$. $\langle x - s, s_1 \rangle = \sum_j c_j \langle x, e_j \rangle - \sum_{j,k} c_j \langle x, e_i \rangle \langle e_i, e_j \rangle$. By orthonormality, the latter is $\sum_j c_j \langle x, e_j \rangle - \sum_j c_j \langle x, e_j \rangle = 0$. Hence, $s^{\perp} = x - s \in S^{\perp}$. If $x = t + t^{\perp} = s + s^{\perp}$, then $t - s = s^{\perp} - t^{\perp} \in S \cap S^{\perp} = \{0\}$. $\|x\|^2 = \|s\|^2 + \|s^{\perp}\|^2 + \langle s, s^{\perp} \rangle + \langle s^{\perp}, s \rangle$ but $\langle s, s^{\perp} \rangle = 0$. \Box The element $s = \sum_i \langle x, e_i \rangle e_i$ is called the *orthogonal projection* of x on the (f.d.) subspace S.

It is basically the "shadow" of x on S.

6 The approximation problem

Consider the following questions:

- What is the best way to approximate continuous functions using sines and cosines ?
- What is the best way to approximate continuous functions using polynomials ?
- If we plot the price of houses vs their area (in a particular locality) what is the "best" estimate of price per square foot ?