1 Recap

- Orthogonality, orthonormal bases.
- Gram-Schmidt procedure (example).

2 Proof of GS

The proof of properties $(a),(b)$ is by constructing the y_{i} inductively/recursively. Taking cue from the \mathbb{R}^{2} example, let $y_{1}=x_{1}$. (Caveat: x_{1} and hence y_{1} is allowed to be 0 .) Define y_{2} as $x_{2}-a x_{1}$ for some, as of now, undetermined $a \in \mathbb{F}$. Note that $y_{2}+a y_{1}=x_{2}$ and hence $L\left(x_{1}, x_{2}\right)=L\left(y_{1}, y_{2}\right)$ (Why ?)
We want y_{2} to be orthogonal to $L\left(y_{1}\right)=L\left(x_{1}\right)=\left\{c x_{1} \mid c \in \mathbb{F}\right\}$. Thus $0=\left\langle y_{2}, c y_{1}\right\rangle=$ $c\left\langle y_{2}, y_{1}\right\rangle$. This happens if and only if $0=\left\langle y_{2}, x_{1}\right\rangle=\left\langle x_{2}, x_{1}\right\rangle-a\left\langle x_{1}, x_{1}\right\rangle$. If $x_{1}=0$, define $y_{2}=x_{2}$. Otherwise, $a=\frac{\left\langle x_{2}, x_{1}\right\rangle}{\left\langle x_{1}, x_{1}\right\rangle}$. For y_{3}, as before, we define $y_{3}=x_{3}-a_{1} y_{1}-a_{2} y_{2}$. Then $0=\left\langle y_{3}, y_{1}\right\rangle=\left\langle x_{3}, y_{1}\right\rangle-a_{1}\left\langle y_{1}, y_{1}\right\rangle$. Likewise, $0=\left\langle y_{3}, y_{2}\right\rangle=\left\langle x_{3}, y_{2}\right\rangle-a_{2}\left\langle y_{2}, y_{2}\right\rangle$. If $y_{i}=0$, define $a_{i}=0$. If not, $a_{i}=\frac{\left\langle x_{3}, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle}$.

Proof of $(a),(b)$: We see a pattern. Assume that y_{1}, \ldots, y_{k} have been defined satisfying the first two properties. Define $y_{k+1}=x_{k+1}-\sum_{i} a_{i} y_{i}$ where $a_{i}=0$ if $y_{i}=0$ and $a_{i}=\frac{\left\langle x_{k+1}, y_{i}\right\rangle}{\left\langle y_{i}, y_{i}\right\rangle}$. Therefore, y_{k+1} is orthogonal to each of the y_{i} and hence to $L\left(y_{1}, y_{2}, \ldots, y_{k}\right)$. Therefore, the first property is met by y_{k+1}. The second property is a HW exercise.
Proof of (c) : Now we prove property (c) by induction again. The case $k=1$ is easy because $L\left(y_{1}^{\prime}\right)=L\left(x_{1}\right)$ implies that $y_{1}^{\prime}=c x_{1}=c y_{1}$. Assume truth for k, i.e., $y_{i}^{\prime}=c_{i} y_{i}$. We shall prove for $k+1$. Suppose we have an element y_{k+1}^{\prime} satisfying both properties, i.e., y_{k+1}^{\prime} is orthogonal to $L\left(y_{1}, \ldots, y_{k}\right)=L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots\right)$ and $L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{k+1}^{\prime}\right)=$ $L\left(y_{1}, y_{2}, \ldots, y_{k+1}\right)=L\left(x_{1}, x_{2}, \ldots, x_{k+1}\right)$. By the second property, $y_{k+1}^{\prime}=\sum_{i=1}^{k+1} a_{i} y_{i}=$ $z+a_{k+1} y_{k+1}$ where $z \in L\left(y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{k}^{\prime}\right)=L\left(y_{1}, \ldots, y_{k}\right)=L\left(x_{1}, \ldots, x_{k}\right)$.
By the first property, $0=\left\langle y_{k+1}^{\prime}, z\right\rangle=\langle z, z\rangle+0$. Hence $z=0$. We are done.

3 More on Gram-Schmidt

Suppose in the above procedure, $y_{i+1}=0$ for some i. Then $x_{i+1} \in L\left(x_{1}, \ldots, x_{i}\right)$ and therefore x_{1}, \ldots, x_{i+1} are linearly dependent. As a consequence, if x_{1}, \ldots, x_{n} are linearly independent, then none of the y_{i} are 0 and since they are mutually orthogonal, they are linearly independent too. Thus, every finite-dimensional inner product space has an orthogonal basis. By dividing each element by its norm, we can convert an orthogonal basis to an orthonormal basis.

4 Orthogonal complement

Let $S \subseteq V$ be a subset of an inner product space. An element $v \in V$ is said to be orthogonal to S if it is so to every element of S. The set of all v orthogonal to S is
denoted as S^{\perp}.
S^{\perp} is always a subspace regardless of whether S is or not (HW). When S is a subspace, S^{\perp} is called the orthogonal complement of S.
Examples :

- The perpendicular subspace to the set $\{(1,1),(1,2)\}$ in \mathbb{R}^{2} with the usual inner product is $\{(0,0)\}$. Indeed, $(a, b) \cdot(1,1)=a+b=0$ and $(a, b) \cdot(1,2)=a+2 b=0$ imply that $a=b=0$.
- Given a line $t(1,2,3)$ in \mathbb{R}^{3}, its orthogonal complement is a plane: $0=(x, y, z) \cdot(1,2,3)=$ $x+2 y+3 z$.
- The continuous functions orthogonal to 1 with the integration inner product on $[0,1]$ are the ones with zero average.

5 Orthogonal decomposition

Recall how we used $(1,1)$ and $(1,2)$ to create orthogonal vectors. Motivated by this construction, we have a theorem:
Let $(V,\langle\rangle$,$) be an inner product space and S \subseteq V$ be a f.d. subspace. Then every element $x \in V$ can be represented uniquely as a sum $x=s+s^{\perp}$ where $s \in S$ and $s^{\perp} \in S^{\perp}$. Moreover, $\|x\|^{2}=\|s\|^{2}+\left\|s^{\perp}\right\|^{2}$.
Caveat: If S is not f.d., the above result is NOT true in general!
Proof: Let e_{1}, \ldots, e_{n} be an orthonormal basis of S. Define $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$. Clearly, $s \in S$. Let $s_{1} \in S$ be an arbitrary element. Then $s_{1}=\sum_{j} c_{j} e_{j} .\left\langle x-s, s_{1}\right\rangle=\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-$ $\sum_{j, k} \overline{c_{j}}\left\langle x, e_{i}\right\rangle\left\langle e_{i}, e_{j}\right\rangle$. By orthonormality, the latter is $\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle-\sum_{j} \bar{c}_{j}\left\langle x, e_{j}\right\rangle=0$. Hence, $s^{\perp}=x-s \in S^{\perp}$. If $x=t+t^{\perp}=s+s^{\perp}$, then $t-s=s^{\perp}-t^{\perp} \in S \cap S^{\perp}=\{0\}$. $\|x\|^{2}=\|s\|^{2}+\left\|s^{\perp}\right\|^{2}+\left\langle s, s^{\perp}\right\rangle+\left\langle s^{\perp}, s\right\rangle$ but $\left\langle s, s^{\perp}\right\rangle=0$.
\square The element $s=\sum_{i}\left\langle x, e_{i}\right\rangle e_{i}$ is called the orthogonal projection of x on the (f.d.) subspace S. It is basically the "shadow" of x on S.

6 The approximation problem

Consider the following questions:

- What is the best way to approximate continuous functions using sines and cosines ?
- What is the best way to approximate continuous functions using polynomials ?
- If we plot the price of houses vs their area (in a particular locality) what is the "best" estimate of price per square foot?

