1 Recap

- Proof of Gram-Schmidt.
- Orthogonal complements.

2 The approximation problem

Consider the following questions (mentioned the last time):

- What is the best way to approximate continuous functions using sines and cosines ?
- What is the best way to approximate continuous functions using polynomials ?
- If we plot the price of houses vs their area (in a particular locality) what is the "best" estimate of price per square foot?

These questions fall under the purview of the approximation problem: Let V be an inner product space and $S \subseteq V$ be a f.d. subspace. Given an element $x \in V$, determine an element $s \in S$ whose distance from x is as small as possible.
Let $S \subseteq V$ be a f.d. subspace of an inner product space $(V,\langle\rangle$,$) and let x \in V$. Then if s is the projection of x on $S,\|x-s\| \leq\|x-t\|$ for any $t \in S$. Equality holds if and only if $t=s$.
Proof: Note that $x=s+s^{\perp}$ and hence $x-t=(s-t)+s^{\perp}$. So $\|x-t\|^{2}=\|s-t\|^{2}+\|x-s\|^{2} \geq$ $\|x-s\|^{2}$ with equality holding if and only if $s=t$.

Examples

- Let $V=C[0,2 \pi]$ and S be the space spanned by $\phi_{0}=\frac{1}{\sqrt{2 \pi}}, \phi_{1}=\frac{\cos (x)}{\sqrt{\pi}}, \phi_{2}=$ $\frac{\sin (x)}{\sqrt{\pi}}, \ldots, \phi_{2 n}$.
- The best approximation of $f \in V$ by S is given by the projection $f_{n}=\sum_{k}\left\langle f, \phi_{k}\right\rangle \phi_{k}$ where $\left\langle f, \phi_{k}\right\rangle=\int_{0}^{2 \pi} f \phi_{k} d x$. These numbers are called the Fourier coefficients of f.
- Let $V=C[-1,1]$ and S be the space spanned by $1, x, \ldots, x^{n}$. The normalised Legendre polynomials $\psi_{0}=\frac{1}{\sqrt{2}}, \psi_{1}=\frac{\sqrt{3}}{\sqrt{2}} x, \psi_{2}=\frac{\sqrt{5}}{2 \sqrt{2}}\left(3 x^{2}-1\right), \ldots, \psi_{n}$ form an orthonormal basis for S.
- The best polynomial approximation of $f \in V$ by S is given by $\tilde{f}_{n}=\sum_{k}\left\langle f, \psi_{k}\right\rangle \psi_{k}$. For instance, if $f(x)=\sin (\pi x)$, then $\left\langle f, \psi_{0}\right\rangle=0,\left\langle f, \psi_{1}\right\rangle=\frac{2 \sqrt{3}}{\pi \sqrt{2}},\left\langle f, \psi_{2}\right\rangle=0$.

3 Least squares fit

Suppose a dependent variable (like the price of a house) y depends linearly on an independent variable (like the area) x as $y=m x+c$. Unfortunately, in real life, if one collects data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, they will not all lie on a line! We want to find
those m, c such that the corresponding line is the "best fit", i.e., $\sum_{i}\left(y_{i}-m x_{i}-c\right)^{2}$ is the smallest possible. Note that if we consider the subspace in \mathbb{R}^{n} spanned by the vectors $\left(x_{1}, \ldots, x_{n}\right)$ and $(1,1, \ldots, 1)$, we essentially want the vector s lying in this space that is the best approximation of the vector $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. We can calculate m, c using the formulae directly, or using the equations $(Y-X \beta)^{T} X=0$ where Y is the column vector of y_{i}, X is the $n \times 2$ matrix whose first column is x and the second column is $(1,1, \ldots)$, and $\beta=\left[\begin{array}{c}m \\ 1\end{array}\right]$.
It is of course possible for the equations to have infinitely many solutions! (This phenomenon is called overfitting.) More generally, if $y=m_{1} x_{1}+m_{2} x_{2}+\ldots+m_{k} x_{k}+c$, then the "data matrix" X is an $n \times(k+1)$ matrix, and the "slopes vector" β is a $(k+1)$-vector. Even then, the principle is to project y onto the "column space", i.e., the subspace of \mathbb{R}^{n} generated by the columns of X. Alternatively, $(Y-X \beta)^{T} X=0$. These equations are called normal equations. This procedure is called linear regression. By the way, if you want to fit polynomials, you can do exactly the same thing by the trick of introducing new variables! $\left(x_{1}=x, x_{2}=x^{2}, \ldots\right)$.

4 Inverses

Recall that our aim was to solve linear equations. In other words, we wanted to solve an inverse problem. We shall study some generalities about inverse functions, and then specialise to inverses of linear maps.

Given two sets V, W and a onto function $T: V \rightarrow W$ A left inverse $L: W \rightarrow V$ is one that satisfies $L(T(x))=x$, i.e., $L T=I_{V}$. A right inverse $R: W \rightarrow V$ satisfies $T(R(x))=x$, i.e., $T R=I_{W}$. These are not mindless definitions. For instance, consider $V=\{1,2\}$ and $W=\{0\}$. Define $T: V \rightarrow W$ as $T(1)=T(2)=0$. So define $R_{1}, R_{2}: W \rightarrow V$ as $R_{1}(0)=1$ and $R_{2}(0)=2$. These are right inverses. However, if $L(T(1))=1$, then $L(0)=1$. That means $L(T(2))=1$. Hence there is no left inverse in this example.

Every onto function $f: V \rightarrow W$ has at least one right inverse. Indeed, for every $w \in W$ there is some $v \in V$ so that $f(v)=w$. Define $R(w)=v$. Clearly $f(R(w))=f(v)=w$. In general, right inverses are not unique.
Here is an interesting result about left inverses: An onto function $T: V \rightarrow W$ can have at most one left inverse. If L is a left inverse of T then it is also a right inverse!
Proof: Suppose $L_{1}, L_{2}: W \rightarrow V$ are left inverses. If $w=T(v)$, then $L_{1}(w)=v=L_{2}(w)$.
Hence $L_{1}=L_{2}$ (the onto assumption plays a role). $T(L(w))=T(L(T(v)))=T(v)=w$. Hence L is also a right inverse.
Moreover, if a left inverse exists, the right inverse is THE left inverse, i.e., the right inverse is unique. (Indeed, $T R_{1}=T R_{2}=I$ and hence $L T R_{1}=L T R_{2} \Rightarrow R_{1}=R_{2}$.)
An onto function $T: V \rightarrow W$ has a left inverse if and only if it is $1-1$ (HW).
A one-onto onto function has a unique left inverse (which we know is also a right inverse). Such a T is called invertible and its (left or right) inverse is denoted as T^{-1}.

5 Inverses of linear maps

Let V, W be vector spaces over the same field. Let $T: V \rightarrow W$ be an onto linear map. Then TFAE.

- T is $1-1$.
- T is invertible and the inverse T^{-1} is linear.
- $\forall x \in V, T(x)=0$ if and only if $x=0$.
item Proof: We prove that $a \Rightarrow b \Rightarrow c \Rightarrow a$.
- $a \Rightarrow b$: We already know that T^{-1} exists. Let $T^{-1}(a v+b w)=c$. So $T(c)=a v+b w$ which is $T(c)=a T\left(T^{-1} v\right)+b T\left(T^{-1} w\right)=T\left(a T^{-1} v+b T^{-1} w\right)$. Since T is $1-1$, $c=a T^{-1} v+b T^{-1} w$.
- $b \Rightarrow c$: If $T(x)=0$, then $x=T^{-1} T(x)=0$.
- $c \Rightarrow a$: If $T(v)=T(w), T(v-w)=0$ and hence $v=w$.

Let V be f.d with $\operatorname{dim}(V)=n$ and $T: V \rightarrow W$ is an onto linear map. Then TFAE (HW):

- T is $1-1$.
- If e_{1}, \ldots, e_{p} are linearly independent in V, then $T\left(e_{1}\right), \ldots, T\left(e_{p}\right)$ are so in W.
- $\operatorname{dim}(W)=n$.
- If e_{1}, \ldots, e_{n} is a basis for V, then $T\left(e_{1}\right), \ldots, T\left(e_{n}\right)$ is so for W.

