
1 Recap

� Approximation problem and examples.

� Left and right inverses, inverses of onto linear maps.

2 Linear equations

Recall that linear systems of equations like 2x+3y+z = 20, x+y−z = π can be written

using matrices as AX = b where A =

[
2 3 1
1 1 −1

]
, X =

 x
y
z

, and b =

[
20
π

]
.

More generally,
∑

j Aijxj = bi, i.e., AX = b represents a system of linear equations. The
matrix A is called the coefficient matrix. As mentioned earlier, systems can fail to have
solutions or even have infinitely many solutions.
If b = 0, then the system AX = 0 is called a homogeneous system. Recall that if AX0 = b,
then any other solution to AX = b is of the form X = X0 + N where AN = 0. So it
suffices to solve AN = 0 and find a single solution to AX = b.

So how does one solve linear equations? One is allowed to

� Interchange equations.

� Multiply both sides of an equation by a nonzero scalar.

� Add one equation to a multiple of another.

The high-school idea is to eliminate a few variables and solve for the rest by “back-
substitution”. This idea was formalised and used to great effect by Gauss and Jordan.

3 Gauss-Jordan elimination

Firstly, in the example above the variables x, y, z are distractions. After all, we only care
about manipulating the coefficients.
So we define the augmented matrix [A|b] by simply adding b as a column to A. Notice
that the three “legal” operations alluded to above are:

� Interchanging the rows of [A|b]. ( Each row corresponds to an equation.)

� Multiply any row by a nonzero scalar.

� Add a row to a multiple of another.

These operations are called elementary row operations. The aim is to do these operations
and bring the matrix to a special form ( known as the row-echelon form).
A matrix C is said to be in the row-echelon form if below the first non-zero entry of
every row all the elements are zero. The point is to solve the last non-trivial equation
and back-substitute to solve the rest.
Examples and non-examples of row-echelon matrices
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�

 2 3 0
0 0 1
0 1 0

 is not in the row-echelon form.

�

[
π 2
0 e

]
is in the row-echelon form.

�

 √−1 1
0 1
0 0

 is in the row-echelon form.

An m× n matrix A is said to be in the reduced row-echelon form if it is in the row-
echelon form, each pivot is 1, and the column containing each pivot has only zeroes in
the other entries.
If A is in the row-echelon form then it can be reduced to the reduced row-echelon form
easily using further row operations.

A theorem of Gauss and Jordan is: Every m × n matrix A with entries in a field F
can be row-reduced to a unique reduced row-echelon form.
The theorem can be proven using induction on the number of rows. Two crucial obser-
vations are:

� Elementary row operations can be reversed, i.e., run backwards.

� If one gets B from A using elementary row operations, then each row of B is a
linear combination of rows of A. ( The linear span of rows of a matrix A is called
the row space of A. Likewise, that of the columns is called the column space.)

Row-reduction does not change the row space (HW). We shall not prove the theorem.
Instead we shall illustrate its application to linear equations using examples.

4 The row-reduction algorithm

� Identify the left-most pivot among all rows. Suppose it occurs in the ith row.

� Interchanging rows, make sure that Ri is the first row.

� Divide out the first-row pivot to make it 1.

� “Clear” everything below the first-row pivot using row operations.

� By induction/recursion/“Rinse and repeat” the (m−1)×n matrix of the next m−1
rows can be assumed to be in the required form.

� Clear the elements in the first row using the pivots in the other rows. ( On a
computer, you can implement it iteratively or recursively.)
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To solve Ax = b, consider the augmented matrix [A|b], and row-reduce it to its RREF
[Ã|b̃].
If any row of Ã is 0, but the corresponding entry of b is not, then the system is inconsistent.
If it is consistent, starting from the bottom of Ã solve for the first non-zero pivoted
variable.
Inductively/recursively, solve for the other pivoted variables.

5 Examples of solving equations

� Solve: 2x− 5y + 4z = −3, x− 2y + z = 5, x− 4y + 6z = 10.

The augmented matrix is

 2 −5 4 −3
1 −2 1 5
1 −4 6 10


R1 → R1/2 gives

 1 −5
2

2 −3
2

1 −2 1 5
1 −4 6 10

.

Now we “clear” the first column through R2 → R2 − R1, R3 → R3 − R1 to get 1 −5
2

2 −3
2

0 1
2
−1 13

2

0 −3
2

4 23
2

.

Rinse and repeat: R2 → 2R2 and then R3 → R3 + 3
2
R2, R1 → R1 + 5

2
R2 give 1 0 −3 31

0 1 −2 13
0 0 1 31

.

It is not in RREF but, we can solve now itself: z = 31, y = 13 + 2z = 75, and
x = 3z + 31 = 124.

� Solve: x− 2y+ z−u+ v = 5, 2x− 5y+ 4z+u− v = −3, x− 4y+ 6z− v+ 2u = 10.

The augmented matrix is

 1 −2 1 −1 1 5
2 −5 4 1 −1 −3
1 −4 6 2 −1 10

.

We clear the first column throughR2 → R2−2R1, R3 → R3−R1 to get

 1 −2 1 −1 1 5
0 −1 2 3 −3 −13
0 −2 5 3 −2 5

.

Now we normalise the second row: R2 → −R2 and then clear the second column:

R3 → R3 + 2R2, R1 → R1 + 2R2 to get

 1 0 −3 −7 7 31
0 1 −2 −3 3 13
0 0 1 −3 4 31

.

We clear the third column: R2 → R2+2R3, R1 → R1+3R3 to get

 1 0 0 −16 19 124
0 1 0 −9 11 75
0 0 1 −3 4 31

.

Thus z = 3u−4v+31, y = 9u−11v+75, x = 16u−19v+124. That is, (x, y, z, u, v) =
(124, 75, 31, 0, 0) + u(16, 9, 3, 1, 0) + v(−19,−11,−4, 0, 1). (124, 75, 31, 0, 0) is a par-
ticular solution, and when the matrix A is considered as a linear map, (16, 9, 3, 1, 0)
and (−19,−11,−4, 0, 1) span the kernel .

3


	Recap
	Linear equations
	Gauss-Jordan elimination
	The row-reduction algorithm
	Examples of solving equations

