1 Recap

- Approximation problem and examples.
- Left and right inverses, inverses of onto linear maps.

2 Linear equations

Recall that linear systems of equations like $2 x+3 y+z=20, x+y-z=\pi$ can be written using matrices as $A X=b$ where $A=\left[\begin{array}{ccc}2 & 3 & 1 \\ 1 & 1 & -1\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$, and $b=\left[\begin{array}{c}20 \\ \pi\end{array}\right]$.
More generally, $\sum_{j} A_{i j} x_{j}=b_{i}$, i.e., $A X=b$ represents a system of linear equations. The matrix A is called the coefficient matrix. As mentioned earlier, systems can fail to have solutions or even have infinitely many solutions.
If $b=0$, then the system $A X=0$ is called a homogeneous system. Recall that if $A X_{0}=b$, then any other solution to $A X=b$ is of the form $X=X_{0}+N$ where $A N=0$. So it suffices to solve $A N=0$ and find a single solution to $A X=b$.

So how does one solve linear equations? One is allowed to

- Interchange equations.
- Multiply both sides of an equation by a nonzero scalar.
- Add one equation to a multiple of another.

The high-school idea is to eliminate a few variables and solve for the rest by "backsubstitution". This idea was formalised and used to great effect by Gauss and Jordan.

3 Gauss-Jordan elimination

Firstly, in the example above the variables x, y, z are distractions. After all, we only care about manipulating the coefficients.
So we define the augmented matrix $[A \mid b]$ by simply adding b as a column to A. Notice that the three "legal" operations alluded to above are:

- Interchanging the rows of $[A \mid b]$. (Each row corresponds to an equation.)
- Multiply any row by a nonzero scalar.
- Add a row to a multiple of another.

These operations are called elementary row operations. The aim is to do these operations and bring the matrix to a special form (known as the row-echelon form).
A matrix C is said to be in the row-echelon form if below the first non-zero entry of every row all the elements are zero. The point is to solve the last non-trivial equation and back-substitute to solve the rest.
Examples and non-examples of row-echelon matrices

- $\left[\begin{array}{lll}2 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ is not in the row-echelon form.
- $\left[\begin{array}{ll}\pi & 2 \\ 0 & e\end{array}\right]$ is in the row-echelon form.
- $\left[\begin{array}{cc}\sqrt{-1} & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right]$ is in the row-echelon form.

An $m \times n$ matrix A is said to be in the reduced row-echelon form if it is in the rowechelon form, each pivot is 1 , and the column containing each pivot has only zeroes in the other entries.
If A is in the row-echelon form then it can be reduced to the reduced row-echelon form easily using further row operations.

A theorem of Gauss and Jordan is: Every $m \times n$ matrix A with entries in a field \mathbb{F} can be row-reduced to a unique reduced row-echelon form.
The theorem can be proven using induction on the number of rows. Two crucial observations are:

- Elementary row operations can be reversed, i.e., run backwards.
- If one gets B from A using elementary row operations, then each row of B is a linear combination of rows of A. (The linear span of rows of a matrix A is called the row space of A. Likewise, that of the columns is called the column space.)

Row-reduction does not change the row space (HW). We shall not prove the theorem. Instead we shall illustrate its application to linear equations using examples.

4 The row-reduction algorithm

- Identify the left-most pivot among all rows. Suppose it occurs in the $i^{\text {th }}$ row.
- Interchanging rows, make sure that R_{i} is the first row.
- Divide out the first-row pivot to make it 1 .
- "Clear" everything below the first-row pivot using row operations.
- By induction/recursion/"Rinse and repeat" the $(m-1) \times n$ matrix of the next $m-1$ rows can be assumed to be in the required form.
- Clear the elements in the first row using the pivots in the other rows. (On a computer, you can implement it iteratively or recursively.)

To solve $A x=b$, consider the augmented matrix $[A \mid b]$, and row-reduce it to its RREF $[\tilde{A} \mid \tilde{b}]$.
If any row of \tilde{A} is 0 , but the corresponding entry of b is not, then the system is inconsistent. If it is consistent, starting from the bottom of \tilde{A} solve for the first non-zero pivoted variable.
Inductively/recursively, solve for the other pivoted variables.

5 Examples of solving equations

- Solve: $2 x-5 y+4 z=-3, x-2 y+z=5, x-4 y+6 z=10$.

The augmented matrix is $\left[\begin{array}{ccc|c}2 & -5 & 4 & -3 \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$
$R_{1} \rightarrow R_{1} / 2$ gives $\left[\begin{array}{ccc|c}1 & -\frac{5}{2} & 2 & -\frac{3}{2} \\ 1 & -2 & 1 & 5 \\ 1 & -4 & 6 & 10\end{array}\right]$.
Now we "clear" the first column through $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{1}$ to get $\left[\begin{array}{ccc|c}1 & -\frac{5}{2} & 2 & -\frac{3}{2} \\ 0 & \frac{1}{2} & -1 & \frac{13}{2} \\ 0 & -\frac{3}{2} & 4 & \frac{23}{2}\end{array}\right]$.
Rinse and repeat: $R_{2} \rightarrow 2 R_{2}$ and then $R_{3} \rightarrow R_{3}+\frac{3}{2} R_{2}, R_{1} \rightarrow R_{1}+\frac{5}{2} R_{2}$ give $\left[\begin{array}{ccc|c}1 & 0 & -3 & 31 \\ 0 & 1 & -2 & 13 \\ 0 & 0 & 1 & 31\end{array}\right]$.
It is not in RREF but, we can solve now itself: $z=31, y=13+2 z=75$, and $x=3 z+31=124$.

- Solve: $x-2 y+z-u+v=5,2 x-5 y+4 z+u-v=-3, x-4 y+6 z-v+2 u=10$.

The augmented matrix is $\left[\begin{array}{ccccc|c}1 & -2 & 1 & -1 & 1 & 5 \\ 2 & -5 & 4 & 1 & -1 & -3 \\ 1 & -4 & 6 & 2 & -1 & 10\end{array}\right]$.
We clear the first column through $R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-R_{1}$ to get $\left[\begin{array}{ccccc|c}1 & -2 & 1 & -1 & 1 & 5 \\ 0 & -1 & 2 & 3 & -3 & -13 \\ 0 & -2 & 5 & 3 & -2 & 5\end{array}\right.$
Now we normalise the second row: $R_{2} \rightarrow-R_{2}$ and then clear the second column:
$R_{3} \rightarrow R_{3}+2 R_{2}, R_{1} \rightarrow R_{1}+2 R_{2}$ to get $\left[\begin{array}{ccccc|c}1 & 0 & -3 & -7 & 7 & 31 \\ 0 & 1 & -2 & -3 & 3 & 13 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
We clear the third column: $R_{2} \rightarrow R_{2}+2 R_{3}, R_{1} \rightarrow R_{1}+3 R_{3}$ to get $\left[\begin{array}{ccccc|c}1 & 0 & 0 & -16 & 19 & 124 \\ 0 & 1 & 0 & -9 & 11 & 75 \\ 0 & 0 & 1 & -3 & 4 & 31\end{array}\right]$.
Thus $z=3 u-4 v+31, y=9 u-11 v+75, x=16 u-19 v+124$. That is, $(x, y, z, u, v)=$ $(124,75,31,0,0)+u(16,9,3,1,0)+v(-19,-11,-4,0,1) .(124,75,31,0,0)$ is a particular solution, and when the matrix A is considered as a linear map, ($16,9,3,1,0$) and $(-19,-11,-4,0,1)$ span the kernel .

