1 Recap

e Approximation problem and examples.

e Left and right inverses, inverses of onto linear maps.

2 Linear equations

Recall that linear systems of equations like 2z 4 3y + 2z = 20, x +y — z = 7 can be written

x
using matrices as AX = b where A = [i i) _11 },X: y |,and b= {27:)}

z
More generally, i Ajjx; = b, ie., AX = b represents a system of linear equations. The
matrix A is called the coefficient matriz. As mentioned earlier, systems can fail to have
solutions or even have infinitely many solutions.
If b = 0, then the system AX = 0 is called a homogeneous system. Recall that if AXy = b,
then any other solution to AX = b is of the form X = Xq+ N where AN = 0. So it
suffices to solve AN = 0 and find a single solution to AX = b.

So how does one solve linear equations? One is allowed to
e Interchange equations.
e Multiply both sides of an equation by a nonzero scalar.

e Add one equation to a multiple of another.

The high-school idea is to eliminate a few variables and solve for the rest by “back-
substitution”. This idea was formalised and used to great effect by Gauss and Jordan.

3 Gauss-Jordan elimination

Firstly, in the example above the variables x, y, z are distractions. After all, we only care
about manipulating the coefficients.

So we define the augmented matriz [A|b] by simply adding b as a column to A. Notice
that the three “legal” operations alluded to above are:

e Interchanging the rows of [A|b]. ( Each row corresponds to an equation.)
e Multiply any row by a nonzero scalar.
e Add a row to a multiple of another.

These operations are called elementary row operations. The aim is to do these operations
and bring the matrix to a special form ( known as the row-echelon form).

A matrix C is said to be in the row-echelon form if below the first non-zero entry of
every row all the elements are zero. The point is to solve the last non-trivial equation
and back-substitute to solve the rest.

Examples and non-examples of row-echelon matrices
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An m x n matrix A is said to be in the reduced row-echelon form if it is in the row-
echelon form, each pivot is 1, and the column containing each pivot has only zeroes in
the other entries.

If A is in the row-echelon form then it can be reduced to the reduced row-echelon form
easily using further row operations.

A theorem of Gauss and Jordan is: Every m x n matrix A with entries in a field F
can be row-reduced to a unique reduced row-echelon form.
The theorem can be proven using induction on the number of rows. Two crucial obser-
vations are:

e Elementary row operations can be reversed, i.e., run backwards.

e If one gets B from A using elementary row operations, then each row of B is a
linear combination of rows of A. ( The linear span of rows of a matrix A is called
the row space of A. Likewise, that of the columns is called the column space.)

Row-reduction does not change the row space (HW). We shall not prove the theorem.
Instead we shall illustrate its application to linear equations using examples.

4 The row-reduction algorithm

e Identify the left-most pivot among all rows. Suppose it occurs in the i** row.
e Interchanging rows, make sure that R; is the first row.

e Divide out the first-row pivot to make it 1.

e “Clear” everything below the first-row pivot using row operations.

e By induction/recursion/ “Rinse and repeat” the (m—1) x n matrix of the next m—1
rows can be assumed to be in the required form.

e Clear the elements in the first row using the pivots in the other rows. ( On a
computer, you can implement it iteratively or recursively.)



 To solve Az = b, consider the augmented matrix [A|b], and row-reduce it to its RREF
[A]D]. .
If any row of A is 0, but the corresponding entry of b is not, then the system is inconsistent.
If it is consistent, starting from the bottom of A solve for the first non-zero pivoted
variable.
Inductively/recursively, solve for the other pivoted variables.

5 Examples of solving equations

e Solve: 20 — by +4z=—-3,2 —2y+ 2 =>5,x — 4y + 62 = 10.

2 =5 4|-3
The augmented matrixis | 1 —2 1| 5
1 —4 6] 10
1 -2 2|-2
Ry — Ry/2gives | 1 =2 1| 5
1 —4 6110
Now We5 “clear” t{lsrle first column through Ry — Ry — Ry, R3 — R3 — R; to get
(1) 1 _21 1f
0 _2§ 4 ﬁ
2 2

Rinse and repeat: Ry — 2R, and then R3 — R3 + %RQ, R, — Ry + gRg give

1 0 —3]31
01 —21]13
00 1|31

It is not in RREF but, we can solve now itself: z = 31, y = 13 + 2z = 75, and
r =32+ 31 =124.

e Solve: t —2y+z2z—u+v=>52r—-5y+4z4+u—v=-3,x—4y+ 62 —v+2u = 10.
1 -2 1 -1 1|5
The augmented matrixis | 2 -5 4 1 —1|-3
1 -4 6 2 —-1|10
1 -2 1 -1 1
We clear the first column through Ry — Ro—2R,, R3 — R3—R;toget | 0 —1 2 3 —3
0 -2 5 3 =2

Now we normalise the second row: Ry — — R, and then clear the second column:
1 0 -3 =7 7|31
R3 — R3+2Ry, Ry > Ry +2Rytoget | O 1 -2 —3 3|13
00 1 -3 4|31
1 0 0 —16 19|124
We clear the third column: Ry — Ro+2R3, Ry — Ri+3Rstoget [ 0 1 0 -9 11| 75
001 -3 431
Thus z = 3u—4v+31, y = Qu—11v+75, x = 16u—19v+124. That is, (z,y, 2, u,v) =
(124,75,31,0,0) +u(16,9,3,1,0) + v(—19,—11,—4,0,1). (124,75,31,0,0) is a par-
ticular solution, and when the matrix A is considered as a linear map, (16,9, 3,1,0)
and (—19,—11,—4,0, 1) span the kernel .
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