
1 Recap

• Defined differentiability (after examples indicating things can go wrong).

• Computed the derivative and proved continuity.

• Meaning of gradient.

2 Differentiability

A sufficient condition for differentiability: Differentiability seems like a pain in the neck
to check. Fortunately, we have a sufficient ( but not necessary) condition that helps us.
Theorem: Suppose f : S ⊂ Rn → R is a scalar field and ~a ∈ S is an interior point.
Suppose the partials fx1 , fx2 , . . . , fxn exist in an open ball B(~a, r) ⊂ S and they are
continuous at ~a. Then f is differentiable in the multivariable sense at ~a. Such functions
are said to be continuously differentiable or C1.

Examples:

• If f(x), g(y) are differentiable functions on R with continuous derivatives then
h(x, y) = f(x)g(y) is differentiable in the multivariable sense. Indeed, hx, hy exist
and by continuity laws, they are continuous.

• By the one-variable chain rule and continuity laws, a linear combination of functions
like f(x)kg(y)l is also differentiable.

• As a consequence, polynomials are differentiable on all of Rn.

• Rational functions are differentiable wherever their denominator is non-zero.

Proof: The only candidate for the total derivative at ~a is surely the linear map
~v → 〈∇f(~a), ~v〉. Let us prove for the special case of f(x, y) first. f(a + h, b + k) −
f(a, b) must be proved to be ∇~vf(a, b) + ‖(h, k)‖E where E → 0 as (h, k) → (0, 0).
f(a+ h, b+ k)− f(a, b) = f(a+ h, b+ k)− f(a, b+ k) + f(a, b+ k)− f(a, b) = I + II.
I: By the Lagrange MVT I = ∂f

∂x
(a+θ1, b+k)h and II = ∂f

∂y
(a, b+θ2)k, where θ1 ∈ (0, h)

and θ2 ∈ (0, k). Roughly speaking, when h, k are small, I is almost fx(a, b)h and II is
almost fy(a, b)k by the assumption of continuity of the partial derivatives.
More rigorously, f(a + h, b + k) − f(a, b) − fx(a, b)h − fy(a, b)k = (I − fx(a, b)h) +
(II − fy(a, b)k). Hence, when ‖(h, k)‖ < δ ( which immediately implies that |h| <
δ, |k| < δ), then by continuity of fx, fy, |fx(a + θ1, b + k) − fx(a, b)| < ε

2
and |fy(a, b +

θ2) − fy(a, b)| < ε
2
. Thus |(I − fx(a, b)h)| < |h| ε

2
and |II − fy(a, b)k| < |k| ε2 . Thus,

|f(a+h,b+k)−f(a,b)−fx(a,b)h−fy(a,b)k|
‖(h,k)‖ < ε. This implies the result in this case.

When we have n variables x1, . . . , xn, the proof is similar. Indeed, write f(a1 + h1, . . .)−
f(a, b) as a sum I + II + . . . where I = f(a1 + h1, . . .)− f(a1, . . .), etc. For each of the n
summands, use Lagrange’s MVT to get partials into the picture. For each of the partials,
we can replace them by their values at ~a at the cost of an error ε

n
provided ~h is small

enough. The same manipulations as before show what we need.
Recall that if h(x) = sin(x2) then f ′(x) = cos(x2)2x. That is, if f : R → R is dif-
ferentiable and g : R → R is differentiable, then f ◦ g : R → R is differentiable and
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(f ◦ g)′(x) = f ′(g(x))g′(x).
The rough idea of the proof is as follows. g(x + h) ≈ g(x) + hg′(x) when h is small.
f(y + k) ≈ f(y) + kf ′(y) when k is small. So f(g(x + h)) ≈ f(g(x) + hg′(x)) which is

f(g(x)) +hg′(x)f ′(g(x)) when h is small. Thus f(g(x+h))−f(g(x))
h

≈ g′(x)f ′(g(x)) when h is
small. Of course, one has to make the above rigorous using δs and εs.
There is a genuine need for a higher-variable chain rule. Here are two examples where
such a rule might help.
Suppose a particle is moving along a path ~r(t) in a room. One question is what rate of
temperature rise will the particle experience? That is, suppose T (x, y, z) is the tempera-
ture ( presumably an infinitely differentiable function) and ~r(t) = (x(t), y(t), z(t)) is the

trajectory ( again presumably highly differentiable), then what is dT (x(t),y(t),z(t))
dt

?
Consider the polar coordinates x = r cos(θ), y = r sin(θ), i.e., r2 = x2+y2 and tan(θ) = y

x
.

( By the way, they make sense only away from the positive x-axis and the origin.)
Again, let’s assume T (x, y) is the temperature of a hot circular plate. So T̃ (r, θ) =

T (x(r, θ), y(r, θ)) is a function. We want ∂T̃
∂r
, ∂T̃
∂θ

in terms of ∂T
∂x
, ∂T
∂y

. What we want

is limh→0
T (~r(t+h))−T (~r(t))

h
. Note that x(t + h) ≈ x(t) + hx′(t) when h is small. Like-

wise for y(t), z(t), i.e., ~r(t + h) ≈ ~r(t) + h~r′(t). Now T (x + ∆x, y + ∆y, z + ∆z) ≈
T (x, y, z) + ∆xTx + ∆yTy + ∆zTz ( by definition of differentiability). Taking ∆x = x′(t)h
and likewise for y, z, we see that T (~r(t + h)) ≈ T (~r(t)) + h(x′(t)Tx + y′(t)Ty + z′(t)Tz),

i.e., T (~r(t+h))−T (~r(t))
h

≈ x′(t)Tx + y′(t)Ty + z′(t)Tz = 〈∇T,~r′(t)〉 = ∇~r′(t)T .

Theorem: Let f(~r) : S ⊂ Rn → R be a scalar field. Let ~r(t) : (a, b) ∈ R → Rn be
a vector-valued function. Define the composition h(t) : (a, b) → R as h(t) = f(~r(t)).
Suppose t0 ∈ (a, b) is a point where x1(t), x2(t), . . . are differentiable functions and f is
differentiable at ~r(t0). Then h(t) is differentiable at t0 and h′(t0) = 〈∇f(~r(t0)), ~r

′(t0)〉 =
∇~r′(t0)f(~r(t)).

Examples:

• If a path is a regular path, i.e., ~r′(t) 6= 0 ∀ t, then 1
‖~r′(t)‖〈∇f(~r(t0)), ~r

′(t0)〉 is called

the directional derivative along the curve and denoted as df
ds

(the change in f per
metre of the curve). For instance, if f(x, y) = x2−3xy and the path is (t, t2− t+2),
and we want to find df

ds
|t=1, then we calculate as follows. ∇f = (fx, fy) = (2x −

3y,−3x) which at t = 1 is ∇f(~r(1)) = (−4,−3) and ~r′(t) = (1, 2t− 1) which leads
to ~r′(1) = (1, 1). Thus df

ds
|t=1 = 1√

2
〈∇f, ~r′(t)〉 = 1√

2
(−4,−3).(1, 1) = −7√

2
.
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