1 Recap

- Defined differentiability (after examples indicating things can go wrong).
- Computed the derivative and proved continuity.
- Meaning of gradient.

2 Differentiability

A sufficient condition for differentiability: Differentiability seems like a pain in the neck to check. Fortunately, we have a sufficient (but not necessary) condition that helps us. Theorem: Suppose $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a scalar field and $\vec{a} \in S$ is an interior point. Suppose the partials $f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}}$ exist in an open ball $B(\vec{a}, r) \subset S$ and they are continuous at \vec{a}. Then f is differentiable in the multivariable sense at \vec{a}. Such functions are said to be continuously differentiable or \mathcal{C}^{1}.

Examples:

- If $f(x), g(y)$ are differentiable functions on \mathbb{R} with continuous derivatives then $h(x, y)=f(x) g(y)$ is differentiable in the multivariable sense. Indeed, h_{x}, h_{y} exist and by continuity laws, they are continuous.
- By the one-variable chain rule and continuity laws, a linear combination of functions like $f(x)^{k} g(y)^{l}$ is also differentiable.
- As a consequence, polynomials are differentiable on all of \mathbb{R}^{n}.
- Rational functions are differentiable wherever their denominator is non-zero.

Proof: The only candidate for the total derivative at \vec{a} is surely the linear map $\vec{v} \rightarrow\langle\nabla f(\vec{a}), \vec{v}\rangle$. Let us prove for the special case of $f(x, y)$ first. $f(a+h, b+k)-$ $f(a, b)$ must be proved to be $\nabla_{\vec{v}} f(a, b)+\|(h, k)\| E$ where $E \rightarrow 0$ as $(h, k) \rightarrow(0,0)$. $f(a+h, b+k)-f(a, b)=f(a+h, b+k)-f(a, b+k)+f(a, b+k)-f(a, b)=I+I I$. I : By the Lagrange MVT $I=\frac{\partial f}{\partial x}\left(a+\theta_{1}, b+k\right) h$ and $I I=\frac{\partial f}{\partial y}\left(a, b+\theta_{2}\right) k$, where $\theta_{1} \in(0, h)$ and $\theta_{2} \in(0, k)$. Roughly speaking, when h, k are small, I is almost $f_{x}(a, b) h$ and $I I$ is almost $f_{y}(a, b) k$ by the assumption of continuity of the partial derivatives.
More rigorously, $f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k=\left(I-f_{x}(a, b) h\right)+$ $\left(I I-f_{y}(a, b) k\right)$. Hence, when $\|(h, k)\|<\delta$ (which immediately implies that $|h|<$ $\delta,|k|<\delta)$, then by continuity of $f_{x}, f_{y},\left|f_{x}\left(a+\theta_{1}, b+k\right)-f_{x}(a, b)\right|<\frac{\epsilon}{2}$ and $\mid f_{y}(a, b+$ $\left.\theta_{2}\right)-f_{y}(a, b) \left\lvert\,<\frac{\epsilon}{2}\right.$. Thus $\left|\left(I-f_{x}(a, b) h\right)\right|<|h| \frac{\epsilon}{2}$ and $\left|I I-f_{y}(a, b) k\right|<|k| \frac{\epsilon}{2}$. Thus, $\frac{\left|f(a+h, b+k)-f(a, b)-f_{x}(a, b) h-f_{y}(a, b) k\right|}{\|(h, k)\|}<\epsilon$. This implies the result in this case.
When we have n variables x_{1}, \ldots, x_{n}, the proof is similar. Indeed, write $f\left(a_{1}+h_{1}, \ldots\right)-$ $f(a, b)$ as a sum $I+I I+\ldots$ where $I=f\left(a_{1}+h_{1}, \ldots\right)-f\left(a_{1}, \ldots\right)$, etc. For each of the n summands, use Lagrange's MVT to get partials into the picture. For each of the partials, we can replace them by their values at \vec{a} at the cost of an error $\frac{\epsilon}{n}$ provided \vec{h} is small enough. The same manipulations as before show what we need.
Recall that if $h(x)=\sin \left(x^{2}\right)$ then $f^{\prime}(x)=\cos \left(x^{2}\right) 2 x$. That is, if $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, then $f \circ g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and
$(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$.
The rough idea of the proof is as follows. $g(x+h) \approx g(x)+h g^{\prime}(x)$ when h is small. $f(y+k) \approx f(y)+k f^{\prime}(y)$ when k is small. So $f(g(x+h)) \approx f\left(g(x)+h g^{\prime}(x)\right)$ which is $f(g(x))+h g^{\prime}(x) f^{\prime}(g(x))$ when h is small. Thus $\frac{f(g(x+h))-f(g(x))}{h} \approx g^{\prime}(x) f^{\prime}(g(x))$ when h is small. Of course, one has to make the above rigorous using δ s and ϵ s.
There is a genuine need for a higher-variable chain rule. Here are two examples where such a rule might help.
Suppose a particle is moving along a path $\vec{r}(t)$ in a room. One question is what rate of temperature rise will the particle experience? That is, suppose $T(x, y, z)$ is the temperature (presumably an infinitely differentiable function) and $\vec{r}(t)=(x(t), y(t), z(t))$ is the trajectory (again presumably highly differentiable), then what is $\frac{d T(x(t), y(t), z(t))}{d t}$?
Consider the polar coordinates $x=r \cos (\theta), y=r \sin (\theta)$, i.e., $r^{2}=x^{2}+y^{2}$ and $\tan (\theta)=\frac{y}{x}$. (By the way, they make sense only away from the positive x-axis and the origin.) Again, let's assume $T(x, y)$ is the temperature of a hot circular plate. So $\tilde{T}(r, \theta)=$ $T(x(r, \theta), y(r, \theta))$ is a function. We want $\frac{\partial \tilde{T}}{\partial r}, \frac{\partial \tilde{T}}{\partial \theta}$ in terms of $\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}$. What we want is $\lim _{h \rightarrow 0} \frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h}$. Note that $x(t+h) \approx x(t)+h x^{\prime}(t)$ when h is small. Likewise for $y(t), z(t)$, i.e., $\vec{r}(t+h) \approx \vec{r}(t)+h \vec{r}^{\prime}(t)$. Now $T(x+\Delta x, y+\Delta y, z+\Delta z) \approx$ $T(x, y, z)+\Delta x T_{x}+\Delta y T_{y}+\Delta z T_{z}$ (by definition of differentiability). Taking $\Delta x=x^{\prime}(t) h$ and likewise for y, z, we see that $T(\vec{r}(t+h)) \approx T(\vec{r}(t))+h\left(x^{\prime}(t) T_{x}+y^{\prime}(t) T_{y}+z^{\prime}(t) T_{z}\right)$, i.e., $\frac{T(\vec{r}(t+h))-T(\vec{r}(t))}{h} \approx x^{\prime}(t) T_{x}+y^{\prime}(t) T_{y}+z^{\prime}(t) T_{z}=\left\langle\nabla T, \vec{r}^{\prime}(t)\right\rangle=\nabla_{\vec{r}^{\prime}(t)} T$.

Theorem: Let $f(\vec{r}): S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a scalar field. Let $\vec{r}(t):(a, b) \in \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a vector-valued function. Define the composition $h(t):(a, b) \rightarrow \mathbb{R}$ as $h(t)=f(\vec{r}(t))$. Suppose $t_{0} \in(a, b)$ is a point where $x_{1}(t), x_{2}(t), \ldots$ are differentiable functions and f is differentiable at $\vec{r}\left(t_{0}\right)$. Then $h(t)$ is differentiable at t_{0} and $h^{\prime}\left(t_{0}\right)=\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle=$ $\nabla_{\vec{r}^{\prime}\left(t_{0}\right)} f(\vec{r}(t))$.

Examples:

- If a path is a regular path, i.e., $\vec{r}^{\prime}(t) \neq 0 \forall t$, then $\frac{1}{\left\|\vec{r}^{\prime}(t)\right\|}\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}^{\prime}\left(t_{0}\right)\right\rangle$ is called the directional derivative along the curve and denoted as $\frac{d f}{d s}$ (the change in f per metre of the curve). For instance, if $f(x, y)=x^{2}-3 x y$ and the path is $\left(t, t^{2}-t+2\right)$, and we want to find $\left.\frac{d f}{d s}\right|_{t=1}$, then we calculate as follows. $\nabla f=\left(f_{x}, f_{y}\right)=(2 x-$ $3 y,-3 x)$ which at $t=1$ is $\nabla f(\vec{r}(1))=(-4,-3)$ and $\vec{r}^{\prime}(t)=(1,2 t-1)$ which leads to $\vec{r}^{\prime}(1)=(1,1)$. Thus $\left.\frac{d f}{d s}\right|_{t=1}=\frac{1}{\sqrt{2}}\left\langle\nabla f, \vec{r}^{\prime}(t)\right\rangle=\frac{1}{\sqrt{2}}(-4,-3) \cdot(1,1)=\frac{-7}{\sqrt{2}}$.

