1 Recap

e Defined differentiability (after examples indicating things can go wrong).
e Computed the derivative and proved continuity.

e Meaning of gradient.

2 Differentiability

A sufficient condition for differentiability: Differentiability seems like a pain in the neck
to check. Fortunately, we have a sufficient ( but not necessary) condition that helps us.
Theorem: Suppose f : S C R®” — R is a scalar field and @ € S is an interior point.
Suppose the partials f,,, fu,,- .-, fe, erist in an open ball B(d,r) C S and they are
continuous at @. Then f is differentiable in the multivariable sense at @. Such functions
are said to be continuously differentiable or C'.

Examples:

o If f(x),g(y) are differentiable functions on R with continuous derivatives then
h(z,y) = f(z)g(y) is differentiable in the multivariable sense. Indeed, h,, h, exist
and by continuity laws, they are continuous.

e By the one-variable chain rule and continuity laws, a linear combination of functions
like f(z)*g(y)' is also differentiable.

e As a consequence, polynomials are differentiable on all of R™.
e Rational functions are differentiable wherever their denominator is non-zero.

Proof: The only candidate for the total derivative at d is surely the linear map
v — (Vf(a@),v). Let us prove for the special case of f(x,y) first. f(a + h,b+ k) —
f(a,b) must be proved to be Vzf(a,b) + ||(h,k)||E where E — 0 as (h,k) — (0,0).
fla+h,b+k)— f(a,b) = fla+h,b+k)— fla,b+ k) + f(a,b+ k) — f(a,b) =1+ I1.
I: By the Lagrange MVT [ = %(a—i—@l, b+k)h and IT = g—’yc(a, b+6s)k, where 6, € (0, h)
and 0, € (0,k). Roughly speaking, when h, k are small, I is almost f,(a,b)h and IT is
almost f,(a,b)k by the assumption of continuity of the partial derivatives.
More rigorously, f(a + h,b + k) — f(a,b) — fo(a,b)h — fy(a,b)k = (I — f.(a,b)h) +
(II — f,(a,b)k). Hence, when [[(h,k)|| < 0 ( which immediately implies that |h| <
d,|k| < ), then by continuity of f;, fy, |fz(a + 01,0+ k) — f.(a,b)| < 5 and |f,(a,b +
02) — fy(a,b)| < 5. Thus [(I — fe(a,b)h)| < |h|5 and |II — f,(a,b)k| < |k|5. Thus,

|f(a+h’b+k)7f(c|b|’(122{ﬂ”(a’b)hffy(a’b)kl < €. This implies the result in this case.

When we have n variables 1, ..., x,, the proof is similar. Indeed, write f(a; + hq,...) —
f(a,b) asasum [+ 11+ ... where I = f(a; + hy,...) — f(aq,...), etc. For each of the n
summands, use Lagrange’s MVT to get partials into the picture. For each of the partials,
we can replace them by their values at @ at the cost of an error £ provided h is small
enough. The same manipulations as before show what we need.

Recall that if h(z) = sin(z?) then f’(z) = cos(x?)2z. That is, if f : R — R is dif-
ferentiable and g : R — R is differentiable, then f o g : R — R is differentiable and
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(f 0.9)(x) = F(9(x))g' ().
The rough idea of the proof is as follows. g(z + h) =~ g(x) +

fly+k) =~ f(y) + kf'(y) when k is small. So f(g(z + h)) =~ f(g(x) + hg'(x)) which is
Flg(2)) +hg' (@) f'(g(x)) when h is small. Thus L&+ )) 1) o o () f(g(x)) when h is
small. Of course, one has to make the above rigorous usmg 0s and es.

There is a genuine need for a higher-variable chain rule. Here are two examples where
such a rule might help.

Suppose a particle is moving along a path 7(¢) in a room. One question is what rate of
temperature rise will the particle experience? That is, suppose T'(x,y, z) is the tempera-
ture ( presumably an infinitely differentiable function) and 7(t) = (z(t), y(¢), z(t)) is the
trajectory ( again presumably highly differentiable), then what is W?
Consider the polar coordinates z = 7 cos(f),y = rsin(f), i.e., r* = 2>+y* and tan(f) = £.
( By the way, they make sense only away from the positive z-axis and the origin.)
Again, let’s assume T'(z,7) is the temperature of a hot circular plate. So T(r,6) =

T(x(r,0),y(r,0)) is a function. We want %T, %—g in terms of 6T,‘Z—T What we want

is limy,_,o w Note that z(t + h) ~ x(t) + ha/(t) when h is small. Like-
wise for y(t), z(t), i.e., 7t + h) =~ 7(t) + h'(t). Now T(z + Az,y + Ay, z + Az) =~
T(x,y,z)+ AzT, + AyT,+ AzT, ( by definition of differentiability). Taking Az = 2/(¢)h
and likewise for y, z, we see that T(7(t + h)) =~ T(7(t)) + h(z'(t)T, + y'(t)T, + Z'(t)T%),
pe., HAHREICO) & o/ ()T, +y ()T, + 2/ ()T = (VT,7 () = Ve T

hg'(xz) when h is small.
(g(z

Theorem: Let f(7) : S C R® — R be a scalar field. Let 7(¢) : (a,b) € R — R™ be
a vector-valued function. Define the composition h(t) : (a,b) — R as h(t) = f(7(t)).
Suppose tg € (a,b) is a point where z1(t),z2(t),. .. are differentiable functions and f is

differentiable at 7(ty). Then h(t) is differentiable at tq and h'(ty) = (Vf(7(tg)), 7 (to)) =
V(1) f(F(1))-

Examples:

o If a path is a regular path, i.e., 7(t) # 0 V ¢, then Hd, ol <Vf( (to)), 7 (to)) is called

the directional derivative along the curve and denoted as —s (the change in f per

metre of the curve). For instance, if f(z,y) = 2% —3zy and the path is (¢,t* —t+2),

and we want to find %]t:b then we calculate as follows. Vf = (fs, f,) = (2z —

3y, —3x) which at t = 1is V f(7(1)) = (—4,—3) and 7'(t) = (1,2t — 1) which leads
7

to (1) = (1,1). Thus L]y = H(Vf,7 (1) = F5(—4,-3).(1,1) = =L,



	Recap
	Differentiability

