1 Recap
e C! implies differentiability.

e Statement of the chain rule (for f(7(t))).

2 Chain rule

Examples:

e Suppose f(z,y) = z? — y* and 7\(t) = (¢,2t) and 7(t) = (2t,4t). Then V[ =
(2x,—2y) and 7 = (1,2), % = (2,4). Thus —df(xl(z’yg(t)) = —6t and —df(xl(:ll’y"’(t)) =
—24¢t. In other words, the choice of parameterisation can affect the result. ( Warn-
ing: At a point say (1,2), for 7, t = 1 and for Fg, t= 1 . Thus the derivatives of f

are —6, —12 respectively. On the other hand, % is the same for both paths.)

e Let f: R2 — R be a differentiable scalar field such that Vf # 0 anywhere. Let
¢ € R a constant such that f(x,y) = ¢ describes a differentiable curve C' having a
well-defined unit tangent vector at each point. Prove that the following hold.

1. The gradient vector V f is normal to C.
2. The directional derlvatlve along Cis 0.

3. The directional derivative of f at any point on C' is highest in the normal
direction to C.

Let ¥ be the unit tangent vector at a point (zg,yo) on C, i.e., f(xo,y0) = ¢. By
the assumption of a well-defined unit tangent , the curve C' can be parameterised
as 7(t) = (x(t),y(t)) where the tangent vector at (zo,v0) = (2(0),y(0)) is v, i.e.,
('(t),y'(t)) = ¢. Thus % at t = 0, i.e., at (zo,yo) is %)t,y(t)) = 0 because
f(z(t),y(t)) = c for all t. This proves the second part. Moreover, W =
(Vf,7) =0 and hence V f(xg,yo) is perpendicular to the tangent, i.e., it is normal
to C. Lastly, by Cauchy-Schwarz, the directional derivative at (xg,yo) is highest

along V f(xo, o) which we just proved is normal to C'.

Proof: Recall that roughly, f(7(t + h)) — f(7) = f(F+ h") — f(F) = hV#f. More rlg-
orously, letting g(t) = f(7(t)), g(to + h) — g(to) = f(@+ y) — f(d) where @ = 7(to), ¥
7(to+h)—7(to). Using the definition of differentiability of f, f(d+y) = f(a)+(V f(a), @—F

HyHE(a y) where E — 0 as ||?J|| 0. S04 to+h) glto) _ (V{7 (t0)), (t0+h) T(t0)>_‘_\\ﬁ(t0+h}z T(t0)||E(C—L’ F(tO—F

h) —7(to)). This goes to the correct answer as h — 0. Indeed |M|E — 0.

Level sets and tangent planes: Whenever f : R® — R is a function, the set 7" € R"
such that f(7) = c is called a level set of f. (If n = 2, it is a called a level curve or a
contour line. If n = 3, it is called a level surface.) These occur as equipotential surfaces
in physics. Even if f is C!, this level set need not always be a “nice smoothly varying”
object. For instance, take zy = 0 in R? or 22 +¢? = 22 in R3. If f is C!, and on the
entire level set f~1(c), Vf # 0 (a regular level set), then it turns out (by a theorem called



the implicit function theorem) that near any point on this level set the level set can be
treated as a graph of a function. In particular, the tangent planes exist at any point.
Near a point @ if 7() is a C'* curve passing through @, i.e., 7(0) = @, and if 7(0) = ¥/, then
since f(r(t)) = c for all ¢, its derivative is zero and hence (V f(@),v) = 0. This means
that Vf(a@) is perpendicular to every tangential vector #. If the level set is regular,
then since tanget planes exist, their equation is (7 — @).Vf(@) = 0. For example, if
g(x,y,2) = z— f(z,y), then the level set g = 0 corresponds to the graph of f(x,y). The
tangent plane can be easily calculated to be z = f(a,b) + 27(@7 b)(x —a)+ g—g(a, b)(y —b)
which is precisely the linear approximation of f.



	Recap
	Chain rule

