
1 Recap

• C1 implies differentiability.

• Statement of the chain rule (for f(~r(t))).

2 Chain rule

Examples:

• Suppose f(x, y) = x2 − y2 and ~r1(t) = (t, 2t) and ~r2(t) = (2t, 4t). Then ∇f =

(2x,−2y) and ~r′1 = (1, 2), ~r′2 = (2, 4). Thus df(x1(t),y2(t))
dt

= −6t and df(x1(t),y2(t))
dt

=
−24t. In other words, the choice of parameterisation can affect the result. ( Warn-
ing: At a point say (1, 2), for ~r1, t = 1 and for ~r2, t = 1

2
. Thus the derivatives of f

are −6,−12 respectively. On the other hand, df
ds

is the same for both paths.)

• Let f : R2 → R be a differentiable scalar field such that ∇f 6= ~0 anywhere. Let
c ∈ R a constant such that f(x, y) = c describes a differentiable curve C having a
well-defined unit tangent vector at each point. Prove that the following hold.

1. The gradient vector ∇f is normal to C.

2. The directional derivative df
ds

along C is 0.

3. The directional derivative of f at any point on C is highest in the normal
direction to C.

Let ~v be the unit tangent vector at a point (x0, y0) on C, i.e., f(x0, y0) = c. By
the assumption of a well-defined unit tangent , the curve C can be parameterised
as ~r(t) = (x(t), y(t)) where the tangent vector at (x0, y0) = (x(0), y(0)) is ~v, i.e.,

(x′(t), y′(t)) = ~v. Thus df
ds

at t = 0, i.e., at (x0, y0) is df(x(t),y(t))
dt

= 0 because

f(x(t), y(t)) = c for all t. This proves the second part. Moreover, df(x(t),y(t))
dt

=
〈∇f,~v〉 = 0 and hence ∇f(x0, y0) is perpendicular to the tangent, i.e., it is normal
to C. Lastly, by Cauchy-Schwarz, the directional derivative at (x0, y0) is highest
along ∇f(x0, y0) which we just proved is normal to C.

Proof: Recall that roughly, f(~r(t + h)) − f(~r) ≈ f(~r + h~r′) − f(~r) ≈ h∇~r′f . More rig-
orously, letting g(t) = f(~r(t)), g(t0 + h) − g(t0) = f(~a + ~y) − f(~a) where ~a = ~r(t0), ~y =
~r(t0+h)−~r(t0). Using the definition of differentiability of f , f(~a+~y) = f(~a)+〈∇f(~a), ~y〉+
‖~y‖E(~a, ~y), where E → 0 as ‖~y‖ → 0. So g(t0+h)−g(t0)

h
= 〈∇f(~r(t0)),~r(t0+h)−~r(t0)〉

h
+‖~r(t0+h)−~r(t0)‖

h
E(~a, ~r(t0+

h)− ~r(t0)). This goes to the correct answer as h→ 0. Indeed |‖~r(t0+h)−~r(t0)‖
h

|E → 0.

Level sets and tangent planes: Whenever f : Rn → R is a function, the set ~r ∈ Rn

such that f(~r) = c is called a level set of f . ( If n = 2, it is a called a level curve or a
contour line. If n = 3, it is called a level surface.) These occur as equipotential surfaces
in physics. Even if f is C1, this level set need not always be a “nice smoothly varying”
object. For instance, take xy = 0 in R2 or x2 + y2 = z2 in R3. If f is C1, and on the
entire level set f−1(c), ∇f 6= ~0 (a regular level set), then it turns out (by a theorem called
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the implicit function theorem) that near any point on this level set the level set can be
treated as a graph of a function. In particular, the tangent planes exist at any point.
Near a point ~a if ~r(t) is a C1 curve passing through ~a, i.e., ~r(0) = ~a, and if ~r′(0) = ~v, then
since f(~r(t)) = c for all t, its derivative is zero and hence 〈∇f(~a), ~v〉 = 0. This means
that ∇f(~a) is perpendicular to every tangential vector ~v. If the level set is regular,
then since tanget planes exist, their equation is (~r − ~a).∇f(~a) = 0. For example, if
g(x, y, z) = z − f(x, y), then the level set g = 0 corresponds to the graph of f(x, y). The
tangent plane can be easily calculated to be z = f(a, b) + ∂f

∂x
(a, b)(x− a) + ∂f

∂y
(a, b)(y− b)

which is precisely the linear approximation of f .
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