1 Recap

- C^1 implies differentiability.
- Statement of the chain rule (for $f(\vec{r}(t))$).

2 Chain rule

Examples:

- Suppose $f(x, y) = x^2 y^2$ and $\vec{r_1}(t) = (t, 2t)$ and $\vec{r_2}(t) = (2t, 4t)$. Then $\nabla f = (2x, -2y)$ and $\vec{r_1} = (1, 2)$, $\vec{r_2} = (2, 4)$. Thus $\frac{df(x_1(t), y_2(t))}{dt} = -6t$ and $\frac{df(x_1(t), y_2(t))}{dt} = -24t$. In other words, the choice of parameterisation can affect the result. (Warning: At a point say (1, 2), for $\vec{r_1}$, t = 1 and for $\vec{r_2}$, $t = \frac{1}{2}$. Thus the derivatives of f are -6, -12 respectively. On the other hand, $\frac{df}{ds}$ is the same for both paths.)
- Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \vec{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that f(x, y) = c describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.
 - 1. The gradient vector ∇f is normal to C.
 - 2. The directional derivative $\frac{df}{ds}$ along C is 0.
 - 3. The directional derivative of f at any point on C is highest in the normal direction to C.

Let \vec{v} be the unit tangent vector at a point (x_0, y_0) on C, i.e., $f(x_0, y_0) = c$. By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t) = (x(t), y(t))$ where the tangent vector at $(x_0, y_0) = (x(0), y(0))$ is \vec{v} , i.e., $(x'(t), y'(t)) = \vec{v}$. Thus $\frac{df}{ds}$ at t = 0, i.e., at (x_0, y_0) is $\frac{df(x(t), y(t))}{dt} = 0$ because f(x(t), y(t)) = c for all t. This proves the second part. Moreover, $\frac{df(x(t), y(t))}{dt} = \langle \nabla f, \vec{v} \rangle = 0$ and hence $\nabla f(x_0, y_0)$ is perpendicular to the tangent, i.e., it is normal to C. Lastly, by Cauchy-Schwarz, the directional derivative at (x_0, y_0) is highest along $\nabla f(x_0, y_0)$ which we just proved is normal to C.

Proof: Recall that roughly, $f(\vec{r}(t+h)) - f(\vec{r}) \approx f(\vec{r}+h\vec{r}') - f(\vec{r}) \approx h\nabla_{\vec{r}'}f$. More rigorously, letting $g(t) = f(\vec{r}(t))$, $g(t_0+h) - g(t_0) = f(\vec{a}+\vec{y}) - f(\vec{a})$ where $\vec{a} = \vec{r}(t_0)$, $\vec{y} = \vec{r}(t_0+h) - \vec{r}(t_0)$. Using the definition of differentiability of f, $f(\vec{a}+\vec{y}) = f(\vec{a}) + \langle \nabla f(\vec{a}), \vec{y} \rangle + \|\vec{y}\| E(\vec{a}, \vec{y})$, where $E \to 0$ as $\|\vec{y}\| \to 0$. So $\frac{g(t_0+h)-g(t_0)}{h} = \frac{\langle \nabla f(\vec{r}(t_0)), \vec{r}(t_0+h)-\vec{r}(t_0) \rangle}{h} + \frac{\|\vec{r}(t_0+h)-\vec{r}(t_0)\|}{h} E(\vec{a}, \vec{r}(t_0+h) - \vec{r}(t_0))$. This goes to the correct answer as $h \to 0$. Indeed $|\frac{\|\vec{r}(t_0+h)-\vec{r}(t_0)\|}{h}|E \to 0$.

Level sets and tangent planes: Whenever $f : \mathbb{R}^n \to \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^n$ such that $f(\vec{r}) = c$ is called a *level set* of f. (If n = 2, it is a called a level curve or a contour line. If n = 3, it is called a level surface.) These occur as equipotential surfaces in physics. Even if f is C^1 , this level set need not always be a "nice smoothly varying" object. For instance, take xy = 0 in \mathbb{R}^2 or $x^2 + y^2 = z^2$ in \mathbb{R}^3 . If f is C^1 , and on the *entire* level set $f^{-1}(c), \nabla f \neq \vec{0}$ (a *regular* level set), then it turns out (by a theorem called the implicit function theorem) that near any point on this level set the level set can be treated as a graph of a function. In particular, the tangent planes exist at any point.

Near a point \vec{a} if $\vec{r}(t)$ is a C^1 curve passing through \vec{a} , i.e., $\vec{r}(0) = \vec{a}$, and if $\vec{r}'(0) = \vec{v}$, then since $f(\vec{r}(t)) = c$ for all t, its derivative is zero and hence $\langle \nabla f(\vec{a}), \vec{v} \rangle = 0$. This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v} . If the level set is regular, then since tanget planes exist, their equation is $(\vec{r} - \vec{a}) \cdot \nabla f(\vec{a}) = 0$. For example, if g(x, y, z) = z - f(x, y), then the level set g = 0 corresponds to the graph of f(x, y). The tangent plane can be easily calculated to be $z = f(a, b) + \frac{\partial f}{\partial x}(a, b)(x - a) + \frac{\partial f}{\partial y}(a, b)(y - b)$ which is precisely the linear approximation of f.