1 Recap

- C^{1} implies differentiability.
- Statement of the chain rule (for $f(\vec{r}(t))$).

2 Chain rule

Examples:

- Suppose $f(x, y)=x^{2}-y^{2}$ and $\vec{r}_{1}(t)=(t, 2 t)$ and $\vec{r}_{2}(t)=(2 t, 4 t)$. Then $\nabla f=$ $(2 x,-2 y)$ and $\vec{r}_{1}^{\prime}=(1,2), \vec{r}_{2}^{\prime}=(2,4)$. Thus $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=-6 t$ and $\frac{d f\left(x_{1}(t), y_{2}(t)\right)}{d t}=$ $-24 t$. In other words, the choice of parameterisation can affect the result. (Warning: At a point say $(1,2)$, for $\vec{r}_{1}, t=1$ and for $\vec{r}_{2}, t=\frac{1}{2}$. Thus the derivatives of f are $-6,-12$ respectively. On the other hand, $\frac{d f}{d s}$ is the same for both paths.)
- Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f \neq \overrightarrow{0}$ anywhere. Let $c \in \mathbb{R}$ a constant such that $f(x, y)=c$ describes a differentiable curve C having a well-defined unit tangent vector at each point. Prove that the following hold.

1. The gradient vector ∇f is normal to C.
2. The directional derivative $\frac{d f}{d s}$ along C is 0 .
3. The directional derivative of f at any point on C is highest in the normal direction to C.

Let \vec{v} be the unit tangent vector at a point $\left(x_{0}, y_{0}\right)$ on C, i.e., $f\left(x_{0}, y_{0}\right)=c$. By the assumption of a well-defined unit tangent, the curve C can be parameterised as $\vec{r}(t)=(x(t), y(t))$ where the tangent vector at $\left(x_{0}, y_{0}\right)=(x(0), y(0))$ is \vec{v}, i.e., $\left(x^{\prime}(t), y^{\prime}(t)\right)=\vec{v}$. Thus $\frac{d f}{d s}$ at $t=0$, i.e., at $\left(x_{0}, y_{0}\right)$ is $\frac{d f(x(t), y(t))}{d t}=0$ because $f(x(t), y(t))=c$ for all t. This proves the second part. Moreover, $\frac{d f(x(t), y(t))}{d t}=$ $\langle\nabla f, \vec{v}\rangle=0$ and hence $\nabla f\left(x_{0}, y_{0}\right)$ is perpendicular to the tangent, i.e., it is normal to C. Lastly, by Cauchy-Schwarz, the directional derivative at (x_{0}, y_{0}) is highest along $\nabla f\left(x_{0}, y_{0}\right)$ which we just proved is normal to C.

Proof: Recall that roughly, $f(\vec{r}(t+h))-f(\vec{r}) \approx f\left(\vec{r}+h \vec{r}^{\prime}\right)-f(\vec{r}) \approx h \nabla_{\vec{r}^{\prime}} f$. More rigorously, letting $g(t)=f(\vec{r}(t)), g\left(t_{0}+h\right)-g\left(t_{0}\right)=f(\vec{a}+\vec{y})-f(\vec{a})$ where $\vec{a}=\vec{r}\left(t_{0}\right), \vec{y}=$ $\vec{r}\left(t_{0}+h\right)-\vec{r}\left(t_{0}\right)$. Using the definition of differentiability of $f, f(\vec{a}+\vec{y})=f(\vec{a})+\langle\nabla f(\vec{a}), \vec{y}\rangle+$ $\|\vec{y}\| E(\vec{a}, \vec{y})$, where $E \rightarrow 0$ as $\|\vec{y}\| \rightarrow 0$. So $\frac{g\left(t_{0}+h\right)-g\left(t_{0}\right)}{h}=\frac{\left\langle\nabla f\left(\vec{r}\left(t_{0}\right)\right), \vec{r}\left(t_{0}+h\right)-\vec{r}\left(t_{0}\right)\right\rangle}{h}+\frac{\left\|\vec{r}\left(t_{0}+h\right)-\vec{r}\left(t_{0}\right)\right\|}{h} E\left(\vec{a}, \vec{r}\left(t_{0}+\right.\right.$ $\left.h)-\vec{r}\left(t_{0}\right)\right)$. This goes to the correct answer as $h \rightarrow 0$. Indeed $\left|\frac{\left\|\vec{r}\left(t_{0}+h\right)-\vec{r}\left(t_{0}\right)\right\|}{h}\right| E \rightarrow 0$.

Level sets and tangent planes: Whenever $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a function, the set $\vec{r} \in \mathbb{R}^{n}$ such that $f(\vec{r})=c$ is called a level set of f. (If $n=2$, it is a called a level curve or a contour line. If $n=3$, it is called a level surface.) These occur as equipotential surfaces in physics. Even if f is C^{1}, this level set need not always be a "nice smoothly varying" object. For instance, take $x y=0$ in \mathbb{R}^{2} or $x^{2}+y^{2}=z^{2}$ in \mathbb{R}^{3}. If f is C^{1}, and on the entire level set $f^{-1}(c), \nabla f \neq \overrightarrow{0}$ (a regular level set), then it turns out (by a theorem called
the implicit function theorem) that near any point on this level set the level set can be treated as a graph of a function. In particular, the tangent planes exist at any point. Near a point \vec{a} if $\vec{r}(t)$ is a C^{1} curve passing through \vec{a}, i.e., $\vec{r}(0)=\vec{a}$, and if $\vec{r}^{\prime}(0)=\vec{v}$, then since $f(\vec{r}(t))=c$ for all t, its derivative is zero and hence $\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. This means that $\nabla f(\vec{a})$ is perpendicular to every tangential vector \vec{v}. If the level set is regular, then since tanget planes exist, their equation is $(\vec{r}-\vec{a}) . \nabla f(\vec{a})=0$. For example, if $g(x, y, z)=z-f(x, y)$, then the level set $g=0$ corresponds to the graph of $f(x, y)$. The tangent plane can be easily calculated to be $z=f(a, b)+\frac{\partial f}{\partial x}(a, b)(x-a)+\frac{\partial f}{\partial y}(a, b)(y-b)$ which is precisely the linear approximation of f.

