1 Recap

- Proof of chain rule.
- Level sets and tangent planes.

2 Vector fields

Recall that a vector field is a function $\vec{F}: S \subset \mathbb{R}^n \to \mathbb{R}^m$. Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon > 0$ there exists a $\delta > 0$ such that whenever $|\vec{r} - \vec{a}| < \delta$, then $|\vec{F}(\vec{r}) - \vec{F}(\vec{a})| < \epsilon$. \vec{F} is continuous if and only if its component scalar fields are so. Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a derivative $\nabla_{\vec{v}}\vec{F}(\vec{a})$ along \vec{v} at the point \vec{a} if $\nabla_{\vec{v}}\vec{F}(\vec{a}) = \frac{\vec{F}(\vec{a}+h\vec{v})-\vec{F}(\vec{a})}{h}$ exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover, $\nabla_{\vec{v}}\vec{F}(\vec{a}) = (\nabla_{\vec{v}}F_1(\vec{a}), \nabla_{\vec{v}}F_2(\vec{a}), \ldots)$ (HW). In particular, one can talk of partial derivatives of \vec{F} . \vec{F} is said to be differentiable at \vec{a} if there exists a linear map $D\vec{F}_{\vec{a}}: \mathbb{R}^n \to \mathbb{R}^m$ such that $\lim_{\vec{h}\to 0} \frac{\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D\vec{F}_{\vec{a}}(\vec{h})\|}{\|\vec{h}\|} = 0$. The map $D\vec{F}_{\vec{a}}$ is called the derivative or total derivative of \vec{F} at \vec{a} .

(HW)
$$\vec{F}$$
 is differentiable if and only if each component is so. Moreover, $D\vec{F}(\vec{v}) = \nabla_{\vec{v}}\vec{F}$.
In other words, $D\vec{F}(\vec{v}) = \begin{bmatrix} \nabla F_1^T \\ \nabla F_2^T \\ \vdots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots \\ \frac{\partial F_2}{\partial x_1} & \frac{\partial F_2}{\partial x_2} & \cdots \\ \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \end{bmatrix}$.

For example, if $\vec{E} = (y, -x)$, then since each component is a polynomial, it is differentiable and $\nabla E_1 = (0, 1), \ \nabla E_2 = (-1, 0)$. Thus $D\vec{E} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Another example, if $\vec{F}(r, \theta) = (r \cos(\theta), r \sin(\theta))$, then $D\vec{F} = \begin{bmatrix} \cos(\theta) & -r \sin(\theta) \\ \sin(\theta) & r \cos(\theta) \end{bmatrix}$

Theorem: If \vec{F} is differentiable at \vec{a} , then it is continuous at \vec{a} .

Proof: $\|\vec{F}(\vec{a}+\vec{h}) - \vec{F}(\vec{a}) - D\vec{F}_{\vec{a}}(\vec{h})\| < \|\vec{h}\|_{\frac{\epsilon}{2}}$ whenever $0 < \|\vec{h}\| < \delta < 1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h}) - \vec{F}(\vec{a})\| < \|D\vec{F}_{\vec{a}}(\vec{h})\| + \frac{\epsilon}{2}$.

At this juncture, we prove a useful linear algebraic lemma: Suppose A is an $m \times n$ matrix and $\vec{v} \in \mathbb{R}^n$. Then $||A\vec{v}|| \leq C_A ||\vec{v}||$ where $C_A = \sum_i ||A_i||$ (where A_i is the i^{th} row of A). Proof of lemma: $||A\vec{v}|| = ||\sum_i \langle A_i, \vec{v} \rangle|| \leq \sum_i |\langle A_i, \vec{v} \rangle e_i| \leq \sum_i ||A_i|| ||\vec{v}||$ by Cauchy-Schwarz.

Returning back to the proof of the theorem, $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})\| < \|\vec{h}\|C_{D\vec{F_a}} + \frac{\epsilon}{2} < \epsilon$ if $\|\vec{h}\|$ is small enough.

3 Chain rule in greater generality

Recall that we wanted to know that if T(x, y) and $\tilde{T}(x(r, \theta), y(r, \theta))$ are functions, then what is \tilde{T}_r in terms of T_x, T_y etc. Roughly speaking, $\tilde{T}(x(r+h, \theta+k), y(r+h, \theta+k)) \approx \tilde{T}(x(r) + h\frac{\partial x}{\partial r} + \frac{\partial x}{\partial \theta}k, y(r) + h\frac{\partial y}{\partial r} + k\frac{\partial y}{\partial \theta}$ which is further approximately equal to $\tilde{T}(x(r,\theta), y(r,\theta)) + \frac{\partial \tilde{T}}{\partial x} \left(h\frac{\partial x}{\partial r} + \frac{\partial x}{\partial \theta}k\right) + \frac{\partial \tilde{T}}{\partial y} \left(h\frac{\partial y}{\partial r} + \frac{\partial y}{\partial \theta}k\right).$ In terms of matrices, it is $(\nabla T) \begin{bmatrix} x_r = \cos(\theta) & x_\theta = y_r = \sin(\theta) & y_\theta &$

Suppose we have $\vec{F}(x,y) = (F_1(x,y), F_2(x,y))$ and $\vec{g}(u,v) = (x(u,v), y(u,v))$, then what must the derivative of $\vec{H} = \vec{F} \circ \vec{g}$ at \vec{a} look like? Going by the Chain rule stated earlier, it ought to be $\begin{bmatrix} \nabla H_1 \\ \nabla H_2 \end{bmatrix} = \begin{bmatrix} \nabla F_1 D \vec{g} \\ \nabla F_2 D \vec{g} \end{bmatrix} = D \vec{F}_{\vec{g}(\vec{a})} D \vec{g}_{\vec{a}}$. In other words, we expect the derivative linear map to be a *composition* of the maps or the matrix to be a product of derivative matrices.

Theorem: Let $\vec{G} : S \subset \mathbb{R}^n \to \mathbb{R}^m$ be a vector field differentiable at an interior point $\vec{a} \in S$. Let $\vec{F} : U \subset \mathbb{R}^m \to \mathbb{R}^p$ be a vector field defined on U containing $\vec{G}(S)$. Suppose $\vec{g}(\vec{a})$ is an interior point of U and \vec{F} is differentiable at $\vec{g}(\vec{a})$. Then $\vec{H} = \vec{F} \circ \vec{G} : S \subset \mathbb{R}^n \to \mathbb{R}^p$ is differentiable at \vec{a} and $D\vec{H}_{\vec{a}} = D\vec{F}_{\vec{g}(\vec{a})} \circ D\vec{G}_{\vec{a}}$ or in terms of matrices, it is the product of matrices.

Proof: Let's prove it for scalar fields. Applying it to each component of a vector field is good enough. Now $f(\vec{g}(\vec{a}) + \vec{y}) - f(\vec{g}(a)) - Df_{\vec{g}(\vec{a})}[\vec{y}] = \|\vec{y}\| E(\vec{g}(\vec{a}), \vec{y})$ where E goes to 0 as \vec{y} goes to $\vec{0}$ by assumption of differentiability of f. Likewise, $\vec{g}(\vec{a} + \vec{h}) =$ $\vec{g}(\vec{a}) + D\vec{g}_{\vec{a}}[\vec{h}] + \|\vec{h}\| \vec{F}(\vec{a}, \vec{h})$ where \vec{F} goes to 0 as $\vec{h} \to \vec{0}$. Let $\vec{y} = \vec{g}(\vec{a} + \vec{h}) - \vec{g}(\vec{a})$. It goes to $\vec{0}$ as \vec{h} does (why?). Thus, $f(\vec{g}(\vec{a} + \vec{h})) - f(\vec{g}(\vec{a})) - Df_{\vec{g}(\vec{a})}D\vec{g}_{\vec{a}}[\vec{h}] = Df_{\vec{g}(\vec{a})}[\vec{y}] +$ $\|\vec{y}\| E(\vec{g}(\vec{a}), \vec{y}) - Df_{\vec{g}(\vec{a})}D\vec{g}_{\vec{a}}[\vec{h}]$ which equals $\|\vec{h}\| Df_{\vec{g}(\vec{a})}\vec{F}(\vec{a}, \vec{h}) + \|\vec{y}\| E(\vec{g}(\vec{a}), \vec{y}) = \|\vec{h}\| H(\vec{a}, \vec{h})$ where H goes to 0 (why?)