1 Recap

- Proof of chain rule.
- Level sets and tangent planes.

2 Vector fields

Recall that a vector field is a function $\vec{F}: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Recall that \vec{F} is said to be continuous at \vec{a} given $\epsilon>0$ there exists a $\delta>0$ such that whenever $|\vec{r}-\vec{a}|<\delta$, then $|\vec{F}(\vec{r})-\vec{F}(\vec{a})|<\epsilon . \vec{F}$ is continuous if and only if its component scalar fields are so.
Let $\vec{a} \in S$ be an interior point. \vec{F} is said to have a derivative $\nabla_{\vec{v}} \vec{F}(\vec{a})$ along \vec{v} at the point \vec{a} if $\nabla_{\vec{v}} \vec{F}(\vec{a})=\frac{\vec{F}(\vec{a}+h \vec{v})-\vec{F}(\vec{a})}{h}$ exists. It is easy to prove that the directional derivative exists if and only if the directional derivative of each component exists. Moreover, $\nabla_{\vec{v}} \vec{F}(\vec{a})=\left(\nabla_{\vec{v}} F_{1}(\vec{a}), \nabla_{\vec{v}} F_{2}(\vec{a}), \ldots\right)(\mathrm{HW})$. In particular, one can talk of partial derivatives of \vec{F}. \vec{F} is said to be differentiable at \vec{a} if there exists a linear map $D \vec{F}_{\vec{a}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $\lim _{\vec{h} \rightarrow 0} \frac{\left\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D \vec{F}_{\vec{a}}(\vec{h})\right\|}{\|\vec{h}\|}=0$. The map $D \vec{F}_{\vec{a}}$ is called the derivative or total derivative of \vec{F} at \vec{a}.
(HW) \vec{F} is differentiable if and only if each component is so. Moreover, $D \vec{F}(\vec{v})=\nabla_{\vec{v}} \vec{F}$. In other words, $D \vec{F}(\vec{v})=\left[\begin{array}{c}\nabla F_{1}^{T} \\ \nabla F_{2}^{T} \\ \vdots\end{array}\right]\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots\end{array}\right]=\left[\begin{array}{ccc}\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial x_{2}} & \cdots \\ \frac{\partial F_{2}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{2}} & \cdots \\ \vdots & \vdots & \ddots\end{array}\right]\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots\end{array}\right]$.
For example, if $\vec{E}=(y,-x)$, then since each component is a polynomial, it is differentiable and $\nabla E_{1}=(0,1), \nabla E_{2}=(-1,0)$. Thus $D \vec{E}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$.
Another example, if $\vec{F}(r, \theta)=(r \cos (\theta), r \sin (\theta))$, then $D \vec{F}=\left[\begin{array}{cc}\cos (\theta) & -r \sin (\theta) \\ \sin (\theta) & r \cos (\theta)\end{array}\right]$
Theorem: If \vec{F} is differentiable at \vec{a}, then it is continuous at \vec{a}.
Proof: $\left\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})-D \vec{F}_{\vec{a}}(\vec{h})\right\|<\|\vec{h}\| \frac{\epsilon}{2}$ whenever $0<\|\vec{h}\|<\delta<1$. By the triangle inequality $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})\|<\left\|D \vec{F}_{\vec{a}}(\vec{h})\right\|+\frac{\epsilon}{2}$.
At this juncture, we prove a useful linear algebraic lemma: Suppose A is an $m \times n$ matrix and $\vec{v} \in \mathbb{R}^{n}$. Then $\|A \vec{v}\| \leq C_{A}\|\vec{v}\|$ where $C_{A}=\sum_{i}\left\|A_{i}\right\|$ (where A_{i} is the $i^{\text {th }}$ row of A). Proof of lemma: $\|A \vec{v}\|=\left\|\sum_{i}\left\langle A_{i}, \vec{v}\right\rangle\right\| \leq \sum_{i}\left|\left\langle A_{i}, \vec{v}\right\rangle e_{i}\right| \leq \sum_{i}\left\|A_{i}\right\|\|\vec{v}\|$ by CauchySchwarz.
Returning back to the proof of the theorem, $\|\vec{F}(\vec{a}+\vec{h})-\vec{F}(\vec{a})\|<\|\vec{h}\| C_{D \vec{F}_{\vec{a}}}+\frac{\epsilon}{2}<\epsilon$ if $\|\vec{h}\|$ is small enough.

3 Chain rule in greater generality

Recall that we wanted to know that if $T(x, y)$ and $\tilde{T}(x(r, \theta), y(r, \theta))$ are functions, then what is \tilde{T}_{r} in terms of T_{x}, T_{y} etc. Roughly speaking, $\tilde{T}(x(r+h, \theta+k), y(r+h, \theta+$ $k)) \approx \tilde{T}\left(x(r)+h \frac{\partial x}{\partial r}+\frac{\partial x}{\partial \theta} k, y(r)+h \frac{\partial y}{\partial r}+k \frac{\partial y}{\partial \theta}\right.$ which is further approximately equal to
$\tilde{T}(x(r, \theta), y(r, \theta))+\frac{\partial \tilde{T}}{\partial x}\left(h \frac{\partial x}{\partial r}+\frac{\partial x}{\partial \theta} k\right)+\frac{\partial \tilde{T}}{\partial y}\left(h \frac{\partial y}{\partial r}+\frac{\partial y}{\partial \theta} k\right)$. In terms of matrices, it is $(\nabla T)\left[\begin{array}{cc}x_{r}=\cos (\theta) & x_{\theta} \\ y_{r}=\sin (\theta) & y_{\theta}\end{array}\right.$
The statement of the chain rule in this case is: If $\vec{g}(u, v)=(x(u, v), y(u, v))$ is differentiable at (a, b) and $f(x, y)$ is differentiable at $\vec{g}(a, b)$, then $h(u, v)=f \circ \vec{g}(u, v)=$ $f(x(u, v), y(u, v))$ is differentiable at (a, b) and $\nabla h=\nabla f D \vec{g}$.
Suppose we have $\vec{F}(x, y)=\left(F_{1}(x, y), F_{2}(x, y)\right)$ and $\vec{g}(u, v)=(x(u, v), y(u, v))$, then what must the derivative of $\vec{H}=\vec{F} \circ \vec{g}$ at \vec{a} look like? Going by the Chain rule stated earlier, it ought to be $\left[\begin{array}{c}\nabla H_{1} \\ \nabla H_{2}\end{array}\right]=\left[\begin{array}{c}\nabla F_{1} D \vec{g} \\ \nabla F_{2} D \vec{g}\end{array}\right]=D \vec{F}_{\vec{g}(\vec{a})} D \vec{g}_{\vec{a}}$. In other words, we expect the derivative linear map to be a composition of the maps or the matrix to be a product of derivative matrices.
Theorem: Let $\vec{G}: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a vector field differentiable at an interior point $\vec{a} \in S$. Let $\vec{F}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ be a vector field defined on U containing $\vec{G}(S)$. Suppose $\vec{g}(\vec{a})$ is an interior point of U and \vec{F} is differentiable at $\vec{g}(\vec{a})$. Then $\vec{H}=\vec{F} \circ \vec{G}: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ is differentiable at \vec{a} and $D \vec{H}_{\vec{a}}=D \vec{F}_{\vec{g}(\vec{a})} \circ D \vec{G}_{\vec{a}}$ or in terms of matrices, it is the product of matrices.
Proof: Let's prove it for scalar fields. Applying it to each component of a vector field is good enough. Now $f(\vec{g}(\vec{a})+\vec{y})-f(\vec{g}(a))-D f_{\vec{g}(\vec{a})}[\vec{y}]=\|\vec{y}\| E(\vec{g}(\vec{a}), \vec{y})$ where E goes to 0 as \vec{y} goes to $\overrightarrow{0}$ by assumption of differentiability of f. Likewise, $\vec{g}(\vec{a}+\vec{h})=$ $\vec{g}(\vec{a})+D \vec{g}_{\vec{a}}[\vec{h}]+\|\vec{h}\| \vec{F}(\vec{a}, \vec{h})$ where \vec{F} goes to 0 as $\vec{h} \rightarrow \overrightarrow{0}$. Let $\vec{y}=\vec{g}(\vec{a}+\vec{h})-\vec{g}(\vec{a})$. It goes to $\overrightarrow{0}$ as \vec{h} does (why?). Thus, $f(\vec{g}(\vec{a}+\vec{h}))-f(\vec{g}(\vec{a}))-D f_{\vec{g}(\vec{a})} D \vec{g}_{\vec{a}}[\vec{h}]=D f_{\vec{g}(\vec{a})}[\vec{y}]+$ $\|\vec{y}\| E(\vec{g}(\vec{a}), \vec{y})-D f_{\vec{g}(\vec{a})} D \vec{g}_{\vec{a}}[\vec{h}]$ which equals $\|\vec{h}\| D f_{\vec{g}(\vec{a})} \vec{F}(\vec{a}, \vec{h})+\|\vec{y}\| E(\vec{g}(\vec{a}), \vec{y})=\|\vec{h}\| H(\vec{a}, \vec{h})$ where H goes to 0 (why?)

