1 Recap

- Differentiability of vector fields.
- Chain rule.

2 Second derivatives

Let $f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}$ when $(x, y)=(0,0)$ and $f(0,0)=0 . f_{x}, f_{y}$ clearly exist away from $(0,0)$ and equal $\frac{y\left(x^{4}+4 x^{2} y^{2}-y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}},-\frac{x\left(y^{4}+4 x^{2} y^{2}-x^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}}$ respectively. At $(0,0), f_{x}=f_{y}=0$ continue to exist. We aim to compute $f_{x y}, f_{y x}$ at $(0,0) . f_{y x}(0,0)=\lim _{k \rightarrow 0} \frac{f_{x}(0, k)-f_{x}(0,0)}{k}=$ $\lim _{k \rightarrow 0} \frac{-k^{5}}{k^{5}}=-1$. Likewise, $f_{x y}(0,0)=1$. Thus they may not be equal in general!
Clairut's theorem: Assume that $f: S \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ is scalar field, and $(a, b) \in S$ is an interior point. Suppose $f_{x}, f_{y}, f_{x y}, f_{y x}$ exist in a neighbourhood of (a, b) and $f_{x y}, f_{y x}$ are continuous at (a, b). Then $f_{x y}(a, b)=f_{y, x}(a, b)$. In particular, for C^{2} functions, the mixed partials are equal.

Local extrema: Recall that in one-variable calculus, it makes sense to ask where a continuous function $f:[a, b] \rightarrow \mathbb{R}$ assumes its maximum and minimum possible values (global or absolute extrema). This makes sense because of the extreme value theorem. Now such a function can achieve its global extrema either at the end-points a and b or somewhere inside. If, in addition, f is differentiable on (a, b), then wherever it attains a local extremum (that is, a local max is a point $x_{0} \in(a, b)$ such that $f(x) \leq f\left(x_{0}\right)$ for all x near x_{0}; likewise for a local min), $f^{\prime}\left(x_{0}\right)=0$. So to find global extrema, it suffices to look at the end-points and the local extrema.
One question: Given a local extremum, how can we decide whether it is a local max or a local min? To answer this question we need a better approximation (than the linear approximation that is).

Taylor theorem (second-order):
Recall that if f is differentiable at a then $f(x)=f(a)+f^{\prime}(a)(x-a)+h_{1}(x)(x-a)$ where $h_{1}(x) \rightarrow 0$ as $x \rightarrow a$. If f is once-differentiable in $(a-\epsilon, a+\epsilon)$ for some $\epsilon>0$, and twice-differentiable at a then Taylor's theorem holds: $f(x)=f(a)+f^{\prime}(a)(x-a)+$ $\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+h_{2}(x)(x-a)^{2}$ where $h_{2}(x) \rightarrow 0$ as $x \rightarrow a$.
Proof: Define $h_{2}(x)=\frac{f(x)-f(a)-f^{\prime}(a)(x-a)-\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}}{(x-a)^{2}}$. At this point, one may use L'Hopital's rule (yes, there is a rigorous version; no I am not going to bore you with it) twice to see the result. (The proof is easier (using the fundamental theorem of calculus and integration by parts) if we assume that $f^{\prime \prime \prime}$ exists and is continuous in $[a, x]$.)

Theorem: Suppose f attains a local extremum at an interior point a. Assume that f is once-differentiable on ($a-\epsilon, a+\epsilon$) for some $\epsilon>0$, and twice-differentiable at a. Then $f^{\prime}(a)=0$ and if $f^{\prime \prime}(a)>0, a$ is a point of local min, and if $f^{\prime \prime}(a)<0$ it is a point of local max.
Proof: The fact that $f^{\prime}(a)=0$ was already proven. Nonetheless, if $f^{\prime}(a) \neq 0$, then suppose $f^{\prime}(a)>0$ (the other case is similar). Then $f(x)-f(a)=f^{\prime}(a)(x-a)+(x-a) h(x)$
where $h(x) \rightarrow 0$ as $x \rightarrow a$. Hence, for x close enough to $a, f^{\prime}(a)+h(x)>0$ and hence if $x<a, f(x)<f(a)$ whereas if $x>a, f(x)>f(a)$. Thus f is not a local extremum. Now if $f^{\prime \prime}(a)>0$, then $f(x)-f(a)=(x-a)^{2}\left(\frac{f^{\prime \prime}(a)}{2}+h_{2}(x)\right)$ where if x is close enough to a, then $\frac{f^{\prime \prime}(a)}{2}+h(x)>0$ and hence $f(x) \geq f(a)$. Thus it is a local min. Likewise if $f^{\prime \prime}(a)<0$.

Of course, one can wonder what happens when $f^{\prime \prime}(a)=0$ (for instance, $f(x)=x^{3}$ and $a=0$). In that case, it need not be a local extremum at all. If it is given to be a local extremum, then one needs to invoke a higher-order Taylor theorem (but in some cases, all the derivatives at the point can be zero and yet one can have a local extremum!).
Let $f(x)=x^{3}-3 x$ on $\left[-2, \frac{1}{2}\right]$. Find all local extrema of f and decide whether they are local maxima or minima. Moreover, find the global extrema of $f . f^{\prime}(x)=3 x^{2}-3=0$ when $x= \pm 1$. On the given domain, $x=-1$ is the only point where $f^{\prime}(x)=0$. (By the way, points where $f^{\prime}(x)=0$ are called critical points.) To find global extrema, compare $f(-2)=-2, f\left(\frac{1}{2}\right)=-\frac{11}{8}, f(-1)=-1+3=2$. So f attains a global max at $x=-1$ and a global min at $x=-2$. To find out whether f attains a local max or min at $x=-1$, $f^{\prime \prime}(x)=6 x=6 \times-1<0$ and hence a local max.

3 Extrema in more than one variable

A scalar field $f: S \subset \rightarrow \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to have an absolute/global maximum at $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all $\vec{r} \in S$ and likewise for an absolute/global minimum. The number $f(\vec{a})$ is called the absolute/global maximum value of f on S.
Just as in one-variable, there is an extreme value theorem: If $f: S \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball containing S, then f is bounded and assumes its maximum and minimum somewhere in S. There is no easy way to reduce it to one-variable. You would have to go through the proof again.
Given this theorem, it makes sense to ask how to calculate the global extrema. So we need local extrema. f is said to have a local maximum at an interior point $\vec{a} \in S$ if $f(\vec{r}) \leq f(\vec{a})$ for all \vec{r} lying in an open ball around \vec{a} that is completely contained in S. Likewise for a local minimum.

Just as in one-variable calculus, to find the global extrema of a differentiable function, we need to find all local extrema and compare them to what happens on the boundary. The boundary is not merely a finite collection of points! That is what makes this harder! Theorem: Let f be differentiable at a local extremum \vec{a}. Then $\nabla f(\vec{a})=\overrightarrow{0}$.
Proof: Let $\|\vec{v}\|=1$. Let $g(t)=f(\vec{a}+t \vec{v})$ be defined for all $|t|<r$ for some small enough r. Then g is differentiable at 0 and attains a local extremum there. Thus $g^{\prime}(0)=\langle\nabla f(\vec{a}), \vec{v}\rangle=0$. Since this fact is true for all $\vec{v}, \nabla f(\vec{a})=\overrightarrow{0}$. Points where the gradient vanishes are called critical points.
Caution: If f is not differentiable at a point, such a point deserves special consideration. For instance, $|x|$ assumes a local min at 0 and it isn't differentiable there. (Unlike us, some books call points of non-diff. critical points.)

