1 Recap

e Differentiability of vector fields.

e Chain rule.

2 Second derivatives

Let f(z,y) = 2@ 4") when (z,y) = (0,0) and f(0,0) = 0. f,, f, clearly exist away
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from (0,0) and equal yal oty oyt) oy’ Haty? ) respectively. At (0,0), f, = f, =0
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continue to exist. We aim to compute f,,, fyz at (0,0). f,2(0,0) = limy_,g w =

limy, o _k—’f = —1. Likewise, f,,(0,0) = 1. Thus they may not be equal in general!
Clairut’s theorem: Assume that f : S C R? — R is scalar field, and (a,b) € S is an
interior point. Suppose fu, fy, fay, fyz €xist in a neighbourhood of (a,b) and f,,, fy. are
continuous at (a,b). Then f,,(a,b) = f,.(a,b). In particular, for C? functions, the mixed
partials are equal.

Local extrema: Recall that in one-variable calculus, it makes sense to ask where a
continuous function f : [a,b] — R assumes its maximum and minimum possible values
( global or absolute extrema). This makes sense because of the extreme value theorem.
Now such a function can achieve its global extrema either at the end-points a and b or
somewhere inside. If, in addition, f is differentiable on (a,b), then wherever it attains a
local extremum ( that is, a local max is a point z € (a, b) such that f(z) < f(x¢) for all
x near xo; likewise for a local min), f’(xg) = 0. So to find global extrema, it suffices to
look at the end-points and the local extrema.

One question: Given a local extremum, how can we decide whether it is a local max or
a local min? To answer this question we need a better approximation ( than the linear
approximation that is).

Taylor theorem (second-order):
Recall that if f is differentiable at a then f(x) = f(a) + f'(a)(x — a) + hi(z)(z — a)
where hy(z) — 0 as x — a. If f is once-differentiable in (a — €,a + €) for some € > 0,
and twice-differentiable at a then Taylor’s theorem holds: f(z) = f(a) + f'(a)(x —a) +
@(x — a)? + hy(z)(z — a)? where hy(z) — 0 as * — a.
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Proof: Define hQ(I’) — f(@)=f(a)—f ((:)E(j'a)‘;) 5 (z—a)
rule ( yes, there is a rigorous version; no I am not going to bore you with it) twice to
see the result. ( The proof is easier (using the fundamental theorem of calculus and

integration by parts) if we assume that f” exists and is continuous in [a, x].)

. At this point, one may use L’Hopital’s

Theorem: Suppose f attains a local extremum at an interior point a. Assume that f
is once-differentiable on (a — €, a + ¢€) for some € > 0, and twice-differentiable at a. Then
f'(a) =0 and if f"(a) > 0, a is a point of local min, and if f”(a) < 0 it is a point of local
max.

Proof: The fact that f'(a) = 0 was already proven. Nonetheless, if f’(a) # 0, then sup-
pose f'(a) > 0 (the other case is similar). Then f(z) — f(a) = f'(a)(z — a) + (x — a)h(z)
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where h(z) — 0 as © — a. Hence, for x close enough to a, f'(a) + h(z) > 0 and hence if
x < a, f(r) < f(a) whereas if z > a, f(x) > f(a). Thus f is not a local extremum. Now
if f”( ) > 0, then f(z) — f(a) = (v — a)z(@ + ha(z)) where if z is close enough to a,
then £ a)+h( ) > 0 and hence f(z) > f(a). Thusit is a local min. Likewise if f”(a) < 0.

Of course, one can wonder what happens when f”(a) = 0 (for instance, f(z) = 2% and
a = 0). In that case, it need not be a local extremum at all. If it is given to be a local
extremum, then one needs to invoke a higher-order Taylor theorem ( but in some cases,
all the derivatives at the point can be zero and yet one can have a local extremum!).
Let f(z) = 2® — 3z on [~2,1]. Find all local extrema of f and decide whether they are
local maxima or minima. Moreover, find the global extrema of f. f/(z) = 322 —3 =0
when z = £1. On the given domain, = —1 is the only point where f’(z) = 0. (By the
way, points where f’(z) = 0 are called critical points.) To find global extrema, compare
f(=2)==2, f(3) = =%, f(-1) = —=1+3 =2. So f attains a global max at z = —1 and
a global min at x = —2. To find out whether f attains a local max or min at x = —1,
f"(x) =62 =6 x —1 < 0 and hence a local max.

3 Extrema in more than one variable

A scalar field f: S C— R™ — R is said to have an absolute/global maximum at @ € S
if f(r) < f(a@) for all 7€ S and likewise for an absolute/global minimum. The number
f(@) is called the absolute/global maximum walue of f on S.

Just as in one-variable, there is an extreme value theorem: If f : S C R" — R is con-
tinuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball
containing S, then f is bounded and assumes its maximum and minimum somewhere in
S. There is no easy way to reduce it to one-variable. You would have to go through the
proof again.

Given this theorem, it makes sense to ask how to calculate the global extrema. So we
need local extrema. f is said to have a local maximum at an interior point @ € S if
f(7) < f(a@) for all 7 lying in an open ball around @ that is completely contained in S.
Likewise for a local minimum.

Just as in one-variable calculus, to find the global extrema of a differentiable function,
we need to find all local extrema and compare them to what happens on the boundary.
The boundary is not merely a finite collection of points! That is what makes this harder!
Theorem: Let f be differentiable at a local extremum @. Then V f(a) =
Proof: Let ||¢]] = 1. Let g(t) = f(d + tv) be defined for all [t| < r for some small
enough r. Then g is differentiable at 0 and attains a local extremum there. Thus
¢'(0) = (Vf(d@),7) = 0. Since this fact is true for all ¥, Vf(@) = 0. Points where
the gradient vanishes are called critical points.

Caution: If f is not differentiable at a point, such a point deserves special consideration.
For instance, |z| assumes a local min at 0 and it isn’t differentiable there. ( Unlike us,
some books call points of non-diff. critical points.)
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