
1 Recap

• Differentiability of vector fields.

• Chain rule.

2 Second derivatives

Let f(x, y) = xy(x2−y2)
x2+y2

when (x, y) = (0, 0) and f(0, 0) = 0. fx, fy clearly exist away

from (0, 0) and equal y(x4+4x2y2−y4)
(x2+y2)2

,−x(y4+4x2y2−x4)
(x2+y2)2

respectively. At (0, 0), fx = fy = 0

continue to exist. We aim to compute fxy, fyx at (0, 0). fyx(0, 0) = limk→0
fx(0,k)−fx(0,0)

k
=

limk→0
−k5
k5

= −1. Likewise, fxy(0, 0) = 1. Thus they may not be equal in general!
Clairut’s theorem: Assume that f : S ⊂ R2 → R is scalar field, and (a, b) ∈ S is an
interior point. Suppose fx, fy, fxy, fyx exist in a neighbourhood of (a, b) and fxy, fyx are
continuous at (a, b). Then fxy(a, b) = fy,x(a, b). In particular, for C2 functions, the mixed
partials are equal.

Local extrema: Recall that in one-variable calculus, it makes sense to ask where a
continuous function f : [a, b] → R assumes its maximum and minimum possible values
( global or absolute extrema). This makes sense because of the extreme value theorem.
Now such a function can achieve its global extrema either at the end-points a and b or
somewhere inside. If, in addition, f is differentiable on (a, b), then wherever it attains a
local extremum ( that is, a local max is a point x0 ∈ (a, b) such that f(x) ≤ f(x0) for all
x near x0; likewise for a local min), f ′(x0) = 0. So to find global extrema, it suffices to
look at the end-points and the local extrema.
One question: Given a local extremum, how can we decide whether it is a local max or
a local min? To answer this question we need a better approximation ( than the linear
approximation that is).

Taylor theorem (second-order):
Recall that if f is differentiable at a then f(x) = f(a) + f ′(a)(x − a) + h1(x)(x − a)
where h1(x) → 0 as x → a. If f is once-differentiable in (a − ε, a + ε) for some ε > 0,
and twice-differentiable at a then Taylor’s theorem holds: f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2 + h2(x)(x− a)2 where h2(x)→ 0 as x→ a.

Proof: Define h2(x) =
f(x)−f(a)−f ′(a)(x−a)− f ′′(a)

2
(x−a)2

(x−a)2 . At this point, one may use L’Hopital’s

rule ( yes, there is a rigorous version; no I am not going to bore you with it) twice to
see the result. ( The proof is easier (using the fundamental theorem of calculus and
integration by parts) if we assume that f ′′′ exists and is continuous in [a, x].)

Theorem: Suppose f attains a local extremum at an interior point a. Assume that f
is once-differentiable on (a− ε, a+ ε) for some ε > 0, and twice-differentiable at a. Then
f ′(a) = 0 and if f ′′(a) > 0, a is a point of local min, and if f ′′(a) < 0 it is a point of local
max.
Proof: The fact that f ′(a) = 0 was already proven. Nonetheless, if f ′(a) 6= 0, then sup-
pose f ′(a) > 0 (the other case is similar). Then f(x)− f(a) = f ′(a)(x− a) + (x− a)h(x)

1



where h(x)→ 0 as x→ a. Hence, for x close enough to a, f ′(a) + h(x) > 0 and hence if
x < a, f(x) < f(a) whereas if x > a, f(x) > f(a). Thus f is not a local extremum. Now

if f ′′(a) > 0, then f(x)− f(a) = (x− a)2(f
′′(a)
2

+ h2(x)) where if x is close enough to a,

then f ′′(a)
2

+h(x) > 0 and hence f(x) ≥ f(a). Thus it is a local min. Likewise if f ′′(a) < 0.

Of course, one can wonder what happens when f ′′(a) = 0 (for instance, f(x) = x3 and
a = 0). In that case, it need not be a local extremum at all. If it is given to be a local
extremum, then one needs to invoke a higher-order Taylor theorem ( but in some cases,
all the derivatives at the point can be zero and yet one can have a local extremum!).
Let f(x) = x3 − 3x on [−2, 1

2
]. Find all local extrema of f and decide whether they are

local maxima or minima. Moreover, find the global extrema of f . f ′(x) = 3x2 − 3 = 0
when x = ±1. On the given domain, x = −1 is the only point where f ′(x) = 0. (By the
way, points where f ′(x) = 0 are called critical points.) To find global extrema, compare
f(−2) = −2, f(1

2
) = −11

8
, f(−1) = −1+3 = 2. So f attains a global max at x = −1 and

a global min at x = −2. To find out whether f attains a local max or min at x = −1,
f ′′(x) = 6x = 6×−1 < 0 and hence a local max.

3 Extrema in more than one variable

A scalar field f : S ⊂→ Rn → R is said to have an absolute/global maximum at ~a ∈ S
if f(~r) ≤ f(~a) for all ~r ∈ S and likewise for an absolute/global minimum. The number
f(~a) is called the absolute/global maximum value of f on S.
Just as in one-variable, there is an extreme value theorem: If f : S ⊂ Rn → R is con-
tinuous, S is a closed subset and S is bounded, i.e., there is a finite-sized closed ball
containing S, then f is bounded and assumes its maximum and minimum somewhere in
S. There is no easy way to reduce it to one-variable. You would have to go through the
proof again.
Given this theorem, it makes sense to ask how to calculate the global extrema. So we
need local extrema. f is said to have a local maximum at an interior point ~a ∈ S if
f(~r) ≤ f(~a) for all ~r lying in an open ball around ~a that is completely contained in S.
Likewise for a local minimum.

Just as in one-variable calculus, to find the global extrema of a differentiable function,
we need to find all local extrema and compare them to what happens on the boundary.
The boundary is not merely a finite collection of points! That is what makes this harder!
Theorem: Let f be differentiable at a local extremum ~a. Then ∇f(~a) = ~0.
Proof: Let ‖~v‖ = 1. Let g(t) = f(~a + t~v) be defined for all |t| < r for some small
enough r. Then g is differentiable at 0 and attains a local extremum there. Thus
g′(0) = 〈∇f(~a), ~v〉 = 0. Since this fact is true for all ~v, ∇f(~a) = ~0. Points where
the gradient vanishes are called critical points.
Caution: If f is not differentiable at a point, such a point deserves special consideration.
For instance, |x| assumes a local min at 0 and it isn’t differentiable there. ( Unlike us,
some books call points of non-diff. critical points.)
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