
1 Recap

• Clairaut’s theorem.

• Taylor’s theorem and extrema in one-variable.

• First derivative test in more than one variable.

2 Extrema in more than one variable

Find the global extrema of f(x, y, z) = x2 − y2 + 3z2 on x2 + y2 + z2 ≤ 1.
f is diff everywhere. Let’s look at critical points first: ∇f = (2x,−2y, 6z) which vanishes
only at the origin (which lies in S). The value of f there is 0. On the boundary of S, i.e, on
the sphere x2+y2+z2 = 1, We see that f(x, y) = x2−y2+3(1−x2−y2) = 3−2x2−4y2 on
x2 + y2 ≤ 1. Now again let’s look at critical points: ∇f = (−4x,−8y) which is 0 at (0, 0)
lying in x2 + y2 ≤ 1. The value of f is 3 there. Let’s look at the boundary x2 + y2 = 1.
There, f(x) = 3− 2x2− 4(1− x2) = −1 + 2x2 and −1 ≤ x ≤ 1. Again f ′ = 4x = 0 when
x = 0 ∈ [−1, 1]. There f(0) = −1. At the end-points, f(−1) = f(1) = 1. Thus the global
max value is 3 occuring at (0, 0,±1) and the global min value is −1 occuring at (0,±1, 0).

Before formulating a second-derivative test for local extrema, note this curious phe-
nomenon: Consider f(x, y) = x2 − y2. Note that ∇f = (2x,−2y) = (0, 0) when
(x, y) = (0, 0). Note that f does not assume a local extremum at (0, 0). This is not
because the second derivatives vanish. Indeed, fxx = 2, fyy = −2, fxy = fyx = 0. Rather,
in some direction(s) that is, along (0, 1), f decreases and in some other(s) (along (1, 0))
it increases.
Definition: A critical point is said to be a saddle point if every open ball containing ~a lying
completely in the domain, contains points ~r1, ~r2 such that f(~r1) > f(~a) and f(~r2) < f(~a).
In the example above (0, 0) is a saddle point.

Let ~a be a critical point of f . Suppose f is C3 in a neighbourhood of ~a ( that is, the
first, second, and third partials exist in a neighbourhood of a and are continuous there;
by Clairut, the mixed partials are equal).

Theorem: Under the above assumptions, for all ~h lying in a certain neighbourhood of ~0,
|f(~a+ ~h)− f(~a)−∇~hf(~a)− 1
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∑
i,j

∂2f
∂xi∂xj

(~a)hihj| ≤ C‖h‖3 for some C > 0.

Proof: Consider u(t) = f(~a+ t~h). By any application of the chain rule and properties of
continuity, we see that u(t) is C3 in (−ε, ε) for some ε > 0. Applying a precise version of

the one-variable Taylor theorem, it turns out that |u(t)− u(0)− u′(0)t− u′′(0)
2
t2| ≤ C|t3|

in a neighbourhood of t = 0 and C does not depend on ~h. Now u′(0) = ∇~hf(~a). In fact,

u′(t) =
∑

i
∂f
∂xi

(~a + t~h)hi. Thus u′′(0) =
∑

i,j
∂2f

∂xi∂xj
(~a)hihj. Now replace t with |h| and h

with h
|h| to get the result.

Let ~a be a critical point of a scalar field f that is C3 in a neighbourhood of ~a. Then
if
∑

i,j
∂2f

∂xi∂xj
(~a)hihj > 0 for all ~h 6= ~0, i.e., the symmetric matrix H(~a) (the Hessian)

given by Hij(~a) = ∂2f
∂xi∂xj

(~a) is positive-definite, then ~a is a local minimum. If H(~a) is
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negative-definite, then ~a is a local maximum. If H is invertible but neither positive nor
negative definite, then ~a is a saddle point. ( If H is not invertible, pray to the flying
spaghetti monster.)
This result raises the question “How does one figure out if a Hermitian matrix H is
positive-definite or not?”
Answer: Since H is Hermitian, it is diagonalisable as H = U †DU for some unitary U .
Thus hTHh̄ = hTU †DUh̄ =

∑
i λi|(Uh̄)i|2 =

∑
i |yi|2λi where y = Uh̄. Thus this expres-

sion is positive for all h if and only if it is so for all y if and only λi > 0 for all i. Likewise,
H is negative-definite if and only if all the eigenvalues are negative. It is invertible if and
only if all of them are non-zero.

From the second-order Taylor expansion, |f(~a+~h)− f(~a)− 1
2
hTH(~a)h| ≤ C‖~h‖3. As

above, diagonalise H = ODO. Now hTH(~a)h =
∑

i(Oh)2iλi. Thus, 1
2

∑
i |(Oh)i|2λi −

C‖~h‖3 ≤ f(~a + ~h) − f(~a) ≤ 1
2

∑
i |(Oh)i|2λi + C‖~h‖3. If H(~a) is positive-definite, then

λi > 0. Let λi > c > 0 for all i. Thus, f(~a + ~h) − f(~a) ≥ c
2
‖~h‖2 − C‖~h‖3. (Indeed,∑

i(Oh)2i = hTOTOh = hTh = ‖~h‖2.) If ‖h‖ < c
4C

, then f(~a + ~h) ≥ f(~a). Thus it is a
local min. Likewise for local max and saddle points (HW).

Find all local extrema of f(x, y) = x2 − xy − 2y2 on x2 + y2 ≤ 16.
∇f = (2x − y,−x − 4y) = (0, 0) precisely when (x, y) = (0, 0). The second derivatives
at (0, 0) are fxx(0, 0) = 2, fyy(0, 0) = −4, fxy(0, 0) = fyx(0, 0) = −1. Thus the Hessian

matrix H is

[
2 −1
−1 −4

]
. Its eigenvalues can be computed to be −1±

√
10 and hence it

is a saddle point. That is, there are no local extrema in the region.
Ideally, we’d like to develop a method to handle local/global extrema when constraints are
imposed. This method is called Lagrange’s multipliers. However, we shall postpone/skip
it for now.
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