1 Recap

- Clairaut's theorem.
- Taylor's theorem and extrema in one-variable.
- First derivative test in more than one variable.

2 Extrema in more than one variable

Find the global extrema of $f(x, y, z)=x^{2}-y^{2}+3 z^{2}$ on $x^{2}+y^{2}+z^{2} \leq 1$.
f is diff everywhere. Let's look at critical points first: $\nabla f=(2 x,-2 y, 6 z)$ which vanishes only at the origin (which lies in S). The value of f there is 0 . On the boundary of S, i.e, on the sphere $x^{2}+y^{2}+z^{2}=1$, We see that $f(x, y)=x^{2}-y^{2}+3\left(1-x^{2}-y^{2}\right)=3-2 x^{2}-4 y^{2}$ on $x^{2}+y^{2} \leq 1$. Now again let's look at critical points: $\nabla f=(-4 x,-8 y)$ which is 0 at $(0,0)$ lying in $x^{2}+y^{2} \leq 1$. The value of f is 3 there. Let's look at the boundary $x^{2}+y^{2}=1$. There, $f(x)=3-2 x^{2}-4\left(1-x^{2}\right)=-1+2 x^{2}$ and $-1 \leq x \leq 1$. Again $f^{\prime}=4 x=0$ when $x=0 \in[-1,1]$. There $f(0)=-1$. At the end-points, $f(-1)=f(1)=1$. Thus the global max value is 3 occuring at $(0,0, \pm 1)$ and the global min value is -1 occuring at $(0, \pm 1,0)$.

Before formulating a second-derivative test for local extrema, note this curious phenomenon: Consider $f(x, y)=x^{2}-y^{2}$. Note that $\nabla f=(2 x,-2 y)=(0,0)$ when $(x, y)=(0,0)$. Note that f does not assume a local extremum at $(0,0)$. This is not because the second derivatives vanish. Indeed, $f_{x x}=2, f_{y y}=-2, f_{x y}=f_{y x}=0$. Rather, in some direction(s) that is, along (0,1), f decreases and in some other(s) (along (1,0)) it increases.
Definition: A critical point is said to be a saddle point if every open ball containing \vec{a} lying completely in the domain, contains points \vec{r}_{1}, \vec{r}_{2} such that $f\left(\vec{r}_{1}\right)>f(\vec{a})$ and $f\left(\vec{r}_{2}\right)<f(\vec{a})$. In the example above $(0,0)$ is a saddle point.

Let \vec{a} be a critical point of f. Suppose f is C^{3} in a neighbourhood of \vec{a} (that is, the first, second, and third partials exist in a neighbourhood of a and are continuous there; by Clairut, the mixed partials are equal).
Theorem: Under the above assumptions, for all \vec{h} lying in a certain neighbourhood of $\overrightarrow{0}$, $\left|f(\vec{a}+\vec{h})-f(\vec{a})-\nabla_{\vec{h}} f(\vec{a})-\frac{1}{2} \sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}\right| \leq C\|h\|^{3}$ for some $C>0$.
Proof: Consider $u(t)=f(\vec{a}+t \vec{h})$. By any application of the chain rule and properties of continuity, we see that $u(t)$ is C^{3} in $(-\epsilon, \epsilon)$ for some $\epsilon>0$. Applying a precise version of the one-variable Taylor theorem, it turns out that $\left|u(t)-u(0)-u^{\prime}(0) t-\frac{u^{\prime \prime}(0)}{2} t^{2}\right| \leq C\left|t^{3}\right|$ in a neighbourhood of $t=0$ and C does not depend on \vec{h}. Now $u^{\prime}(0)=\nabla_{\vec{h}} f(\vec{a})$. In fact, $u^{\prime}(t)=\sum_{i} \frac{\partial f}{\partial x_{i}}(\vec{a}+t \vec{h}) h_{i}$. Thus $u^{\prime \prime}(0)=\sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}$. Now replace t with $|h|$ and h with $\frac{h}{|h|}$ to get the result.

Let \vec{a} be a critical point of a scalar field f that is C^{3} in a neighbourhood of \vec{a}. Then if $\sum_{i, j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a}) h_{i} h_{j}>0$ for all $\vec{h} \neq \overrightarrow{0}$, i.e., the symmetric matrix $H(\vec{a})$ (the Hessian) given by $H_{i j}(\vec{a})=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\vec{a})$ is positive-definite, then \vec{a} is a local minimum. If $H(\vec{a})$ is
negative-definite, then \vec{a} is a local maximum. If H is invertible but neither positive nor negative definite, then \vec{a} is a saddle point. (If H is not invertible, pray to the flying spaghetti monster.)
This result raises the question "How does one figure out if a Hermitian matrix H is positive-definite or not?"
Answer: Since H is Hermitian, it is diagonalisable as $H=U^{\dagger} D U$ for some unitary U. Thus $h^{T} H \bar{h}=h^{T} U^{\dagger} D U \bar{h}=\sum_{i} \lambda_{i}\left|(U \bar{h})_{i}\right|^{2}=\sum_{i}\left|y_{i}\right|^{2} \lambda_{i}$ where $y=U \bar{h}$. Thus this expression is positive for all h if and only if it is so for all y if and only $\lambda_{i}>0$ for all i. Likewise, H is negative-definite if and only if all the eigenvalues are negative. It is invertible if and only if all of them are non-zero.

From the second-order Taylor expansion, $\left|f(\vec{a}+\vec{h})-f(\vec{a})-\frac{1}{2} h^{T} H(\vec{a}) h\right| \leq C\|\vec{h}\|^{3}$. As above, diagonalise $H=O^{D} O$. Now $h^{T} H(\vec{a}) h=\sum_{i}(O h)_{i}^{2} \lambda_{i}$. Thus, $\frac{1}{2} \sum_{i}\left|(O h)_{i}\right|^{2} \lambda_{i}-$ $C\|\vec{h}\|^{3} \leq f(\vec{a}+\vec{h})-f(\vec{a}) \leq \frac{1}{2} \sum_{i}\left|(O h)_{i}\right|^{2} \lambda_{i}+C\|\vec{h}\|^{3}$. If $H(\vec{a})$ is positive-definite, then $\lambda_{i}>0$. Let $\lambda_{i}>c>0$ for all i. Thus, $f(\vec{a}+\vec{h})-f(\vec{a}) \geq \frac{c}{2}\|\vec{h}\|^{2}-C\|\vec{h}\|^{3}$. (Indeed, $\sum_{i}(O h)_{i}^{2}=h^{T} O^{T} O h=h^{T} h=\|\vec{h}\|^{2}$.) If $\|h\|<\frac{c}{4 C}$, then $f(\vec{a}+\vec{h}) \geq f(\vec{a})$. Thus it is a local min. Likewise for local max and saddle points (HW).

Find all local extrema of $f(x, y)=x^{2}-x y-2 y^{2}$ on $x^{2}+y^{2} \leq 16$.
$\nabla f=(2 x-y,-x-4 y)=(0,0)$ precisely when $(x, y)=(0,0)$. The second derivatives at $(0,0)$ are $f_{x x}(0,0)=2, f_{y y}(0,0)=-4, f_{x y}(0,0)=f_{y x}(0,0)=-1$. Thus the Hessian matrix H is $\left[\begin{array}{cc}2 & -1 \\ -1 & -4\end{array}\right]$. Its eigenvalues can be computed to be $-1 \pm \sqrt{10}$ and hence it is a saddle point. That is, there are no local extrema in the region.
Ideally, we'd like to develop a method to handle local/global extrema when constraints are imposed. This method is called Lagrange's multipliers. However, we shall postpone/skip it for now.

