
1 Recap

• Exterior points, boundary points, closed sets.

• Limits, continuity, Sandwich law, examples.

• By the way, limits are unique: If lim~x→~a ~f(~x) = ~L1, ~L2, then ‖L1 − L2‖ ≤ 2ε for all
ε > 0.

2 Limits and continuity

Theorem: Suppose lim(x,y)→(a,b) f(x, y) exists and equals L. If xn → a, yn → b where
(xn, yn) lie in the domain of f for all n, then limn→∞ f(xn, yn) exists and equals L.
Proof: Given ε > 0 choose δ > 0 such that whenever 0 < ‖(x, y)− (a, b)‖ < δ and (x, y)
lie in the domain of f , |f(x, y) − L| < ε. Now choose N large enough so that whenever
n > N , |xn − a| < δ

2
and |yn − b| < δ

2
. Then ‖(xn, yn) − (a, b)‖ < δ and hence for all

n > N , |f(xn, yn)− L| < ε.
The above theorem makes the proof of non-existence much easier. The same theorem
can be stated for more than two variables too. In fact, if the limits of f(xn, yn) exist and
are equal for all such convegent sequences xn → a, yn → b, then by contradiction, we can
conclude that the limit of f(x, y) exists in the multivariable sense (HW).

Limit and Continuity laws:

• Assume that ~f,~g : S → Rn are two functions.

• Suppose lim~x→~a ~f(~x) = ~b and lim~x→~a ~g(~x) = ~c.

• lim~x→~a(~f(~x) + ~g(~x)) exists and equals ~b+ ~c.

• lim~x→~a λ~f(~x) = λ~b.

• lim~x→~a(~f(~x).~g(~x)) exists and equals ~b.~c.

• lim~x→~a ‖~f(~x)‖ exists and equals ‖~b‖.

• If ~f,~g are scalar-valued, ~g(~x) is not zero in a neighbourhood of ~a (intersected with
S), and c 6= 0, then lim~x→~a

f
g

= b
c
.

• The same laws hold for continuity too.

Proofs of 1,2,3:

• Choose δ > 0 so small that whenever 0 < ‖~x − ~a‖ < δ and ~x ∈ S, ‖~f(~x) −~b‖ < ε
2

and ‖~g(~x)− ~c‖ < ε
2
. Thus ‖~f(~x) + ~g(~x)−~b− ~c‖ < ε by the triangle inequality.

• Without loss of generality assume that λ 6= 0 (why?). Choose δ > 0 so small that

whenever 0 < ‖~x− ~a‖ < δ and ~x ∈ S, ‖~f(~x)−~b‖ < ε
|λ| . Thus we are done.
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• Let ~f(~x)−~b = ~h1 and ~g(~x)− ~c = ~h2. |~f(~x).~g(~x))−~b.~c| ≤ |(~h1 +~b).(~h2 + ~c)−~b.~c|.
Now we use the triangle inequality to see that it is less than |~h1.~h2|+ |~h1.~c|+ |~h2.~b|.
By the Cauchy-Schwarz inequality it is less than ‖~h1‖‖~h2‖ + ‖~h1‖‖~c‖ + ‖~h2‖‖~b‖.
We want to make each term less than ε

3
by choosing δ small enough. This can be

done for the last two terms almost by assumption. For the first term, if necessary,
shrink δ so that ‖~hi‖ <

√
ε√
3
.

Proofs of 4,5:

• |‖~f(~x)‖ − ‖~b‖| ≤ ‖~f(~x)−~b‖ by the triangle inequality. We are done.

• We may assume that f = 1 without loss of generality (why?). |1
g
− 1

c
| = |g(~x)−c|

|c||g(~x)| .

Choose δ so small that |g(~x) − c| < |c|
2

. Thus |c|
2
< |g(~x)| < 3|c|

2
. Thus |1

g
− 1

c
| <

2|g(~x)−c|
c2

< ε when δ is even smaller.

• We can also prove that (HW) if λ(x) is continuous and ~f is so then so is λ(x)~f .

Examples:

• Another way to prove that the components of a continuous vector-valued function
are continuous is by noting that they are dot products. The converse follows from
the above properties.

• Since the components are continuous the identity function is so as well.

• Linear maps are continuous: ~f(~a + ~h) = ~f(~a) + ~f(~h) = ~f(~a) +
∑

i hif(~ei) which

goes to ~f(~a) as ~h→ ~0.

• By induction, polynomials are continuous.

• The above properties imply that rational functions are continuous away from the
zeroes of their denominator provided we prove that if g(~a) 6= 0 then it is so in a
neighbourhood. But this follows from continuity of g(~x). (Actually, as we saw, this
assumption is superfluous.)

Composition:
Theorem: Let ~g : U ⊂ Rm → Rn be a function that is continuous at ~a ∈ U . Let
~g(U) ⊂ V ⊂ Rn and let ~f : V ⊂ Rn → Rp be a function that is continuous at ~g(~a) ∈ V .

Then ~f ◦ ~g : U → Rp is continuous at ~a.

2


	Recap
	Limits and continuity
	Derivatives of scalar fields w.r.t vectors

