1 Recap

- Exterior points, boundary points, closed sets.
- Limits, continuity, Sandwich law, examples.
- By the way, limits are unique: If $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{L}_{1}, \vec{L}_{2}$, then $\left\|L_{1}-L_{2}\right\| \leq 2 \epsilon$ for all $\epsilon>0$.

2 Limits and continuity

Theorem: Suppose $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists and equals L. If $x_{n} \rightarrow a, y_{n} \rightarrow b$ where $\left(x_{n}, y_{n}\right)$ lie in the domain of f for all n, then $\lim _{n \rightarrow \infty} f\left(x_{n}, y_{n}\right)$ exists and equals L.
Proof: Given $\epsilon>0$ choose $\delta>0$ such that whenever $0<\|(x, y)-(a, b)\|<\delta$ and (x, y) lie in the domain of $f,|f(x, y)-L|<\epsilon$. Now choose N large enough so that whenever $n>N,\left|x_{n}-a\right|<\frac{\delta}{2}$ and $\left|y_{n}-b\right|<\frac{\delta}{2}$. Then $\left\|\left(x_{n}, y_{n}\right)-(a, b)\right\|<\delta$ and hence for all $n>N,\left|f\left(x_{n}, y_{n}\right)-L\right|<\epsilon$.
The above theorem makes the proof of non-existence much easier. The same theorem can be stated for more than two variables too. In fact, if the limits of $f\left(x_{n}, y_{n}\right)$ exist and are equal for all such convegent sequences $x_{n} \rightarrow a, y_{n} \rightarrow b$, then by contradiction, we can conclude that the limit of $f(x, y)$ exists in the multivariable sense (HW).

Limit and Continuity laws:

- Assume that $\vec{f}, \vec{g}: S \rightarrow \mathbb{R}^{n}$ are two functions.
- Suppose $\lim _{\vec{x} \rightarrow \vec{a}} \vec{f}(\vec{x})=\vec{b}$ and $\lim _{\vec{x} \rightarrow \vec{a}} \vec{g}(\vec{x})=\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x})+\vec{g}(\vec{x}))$ exists and equals $\vec{b}+\vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}} \lambda \vec{f}(\vec{x})=\lambda \vec{b}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}(\vec{f}(\vec{x}) \cdot \vec{g}(\vec{x}))$ exists and equals $\vec{b} \cdot \vec{c}$.
- $\lim _{\vec{x} \rightarrow \vec{a}}\|\vec{f}(\vec{x})\|$ exists and equals $\|\vec{b}\|$.
- If \vec{f}, \vec{g} are scalar-valued, $\vec{g}(\vec{x})$ is not zero in a neighbourhood of \vec{a} (intersected with $S)$, and $c \neq 0$, then $\lim _{\vec{x} \rightarrow \vec{a}} \frac{f}{g}=\frac{b}{c}$.
- The same laws hold for continuity too.

Proofs of $1,2,3$:

- Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{2}$ and $\|\vec{g}(\vec{x})-\vec{c}\|<\frac{\epsilon}{2}$. Thus $\|\vec{f}(\vec{x})+\vec{g}(\vec{x})-\vec{b}-\vec{c}\|<\epsilon$ by the triangle inequality.
- Without loss of generality assume that $\lambda \neq 0$ (why?). Choose $\delta>0$ so small that whenever $0<\|\vec{x}-\vec{a}\|<\delta$ and $\vec{x} \in S,\|\vec{f}(\vec{x})-\vec{b}\|<\frac{\epsilon}{|\lambda|}$. Thus we are done.
- Let $\vec{f}(\vec{x})-\vec{b}=\vec{h}_{1}$ and $\left.\vec{g}(\vec{x})-\vec{c}=\vec{h}_{2} . \mid \vec{f}(\vec{x}) \cdot \vec{g}(\vec{x})\right)-\vec{b} \cdot \vec{c}\left|\leq\left|\left(\vec{h}_{1}+\vec{b}\right) \cdot\left(\vec{h}_{2}+\vec{c}\right)-\vec{b} \cdot \vec{c}\right|\right.$. Now we use the triangle inequality to see that it is less than $\left|\vec{h}_{1} \cdot \vec{h}_{2}\right|+\left|\vec{h}_{1} \cdot \vec{c}\right|+\left|\vec{h}_{2} \cdot \vec{b}\right|$. By the Cauchy-Schwarz inequality it is less than $\left\|\vec{h}_{1}\right\|\left\|\vec{h}_{2}\right\|+\left\|\vec{h}_{1}\right\|\|\vec{c}\|+\left\|\vec{h}_{2}\right\|\|\vec{b}\|$. We want to make each term less than $\frac{\epsilon}{3}$ by choosing δ small enough. This can be done for the last two terms almost by assumption. For the first term, if necessary, shrink δ so that $\left\|\vec{h}_{i}\right\|<\frac{\sqrt{\epsilon}}{\sqrt{3}}$.

Proofs of 4,5 :

- $|\|\vec{f}(\vec{x})\|-\|\vec{b}\|| \leq\|\vec{f}(\vec{x})-\vec{b}\|$ by the triangle inequality. We are done.
- We may assume that $f=1$ without loss of generality (why?). $\left|\frac{1}{g}-\frac{1}{c}\right|=\frac{|g(\vec{x})-c|}{|c| g(\vec{x}) \mid}$. Choose δ so small that $|g(\vec{x})-c|<\frac{|c|}{2}$. Thus $\frac{|c|}{2}<|g(\vec{x})|<\frac{3|c|}{2}$. Thus $\left|\frac{1}{g}-\frac{1}{c}\right|<$ $\frac{2|g(\vec{x})-c|}{c^{2}}<\epsilon$ when δ is even smaller.
- We can also prove that (HW) if $\lambda(x)$ is continuous and \vec{f} is so then so is $\lambda(x) \vec{f}$.

Examples:

- Another way to prove that the components of a continuous vector-valued function are continuous is by noting that they are dot products. The converse follows from the above properties.
- Since the components are continuous the identity function is so as well.
- Linear maps are continuous: $\vec{f}(\vec{a}+\vec{h})=\vec{f}(\vec{a})+\vec{f}(\vec{h})=\vec{f}(\vec{a})+\sum_{i} h_{i} f\left(\vec{e}_{i}\right)$ which goes to $\vec{f}(\vec{a})$ as $\vec{h} \rightarrow \overrightarrow{0}$.
- By induction, polynomials are continuous.
- The above properties imply that rational functions are continuous away from the zeroes of their denominator provided we prove that if $g(\vec{a}) \neq 0$ then it is so in a neighbourhood. But this follows from continuity of $g(\vec{x})$. (Actually, as we saw, this assumption is superfluous.)

Composition:
Theorem: Let $\vec{g}: U \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function that is continuous at $\vec{a} \in U$. Let $\vec{g}(U) \subset V \subset \mathbb{R}^{n}$ and let $\vec{f}: V \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be a function that is continuous at $\vec{g}(\vec{a}) \in V$. Then $\vec{f} \circ \vec{g}: U \rightarrow \mathbb{R}^{p}$ is continuous at \vec{a}.

