
Notes for 10th Jan (Thursday)

1 The road so far...

1. Discussed complete induction.

2. Pigeon-hole principle and examples.

2 Pigeon hole, permutations and combinations

Example 1.7 in walk through combinatorics (illustrates the importance of an algebraic
structure called a graph).

Permutations and combinations are expected to be known and we will not focus too
much on them. However, for the sake of completeness (and to illustrate some general
principles), the number of bijections of [n] = {1, 2, . . . , n} to itself is called the number
of permutations of n letters.

Lemma 2.1. The number of permutations of n letters is Pn = n!.

Proof. Before we prove this lemma, here are a couple of important principles (part of
your HW) :

1. (Sum principle) If there are m ways of doing A and n ways of doing B where A and
B are disjoint, then there are m + n ways of doing either A or B.

2. (Product principle) If A and B are “independent”, then there are mn ways of doing
A and B. More rigorously, the size of a union of m disjoint sets, each of size n is
mn. Alternatively, |A×B| = |A||B|.

Trivially, P1 = 1. Assume that Pn = n!. There are n + 1 possible images of n + 1. The
product principle states that Pn+1 = (n+1)Pn = (n+1)!. (Make this more rigorous.)

A k-permutation is defined as a 1− 1 function from [k] to [n]. (It is an ordered list of
k elements). A k-combination (or a choice of k-elements out of n elements) is a k-element
subset of [n].

Lemma 2.2. The number of k-permutations is P (n, k) = n(n−1) . . . (n−k+1) = n!
(n−k)!

.

Proof. Intuitively, the first element can be chosen in n ways, the second in n − 1 ways
and so on. By the product principle we get the answer. More rigorously, take a k-list
and an n − k permutation of the remaining n − k elements in [n]. This way we get a
permutation of [n]. This map is a bijection and hence P (n, k)(n− k)! = n!.

1



Lemma 2.3. The number of k-combinations is
(
n
k

)
.

Proof. Define an equivalence relation between k-lists as being equivalent if they have
the same elements (the set equality relation). Every equivalence class has k! elements
(permutations). Since this is just the set equality relation, the number of classes C(n, k)
is the number of k-combinations. The number of k-lists is P (n, k). Hence, C(n, k) =
P (n,k)

k!
.

The above proof illustrates an important principle of exploiting symmetry - The quo-
tient principle : If there is a symmetry on the set A such that A is partitioned into k
equal-sized pieces of size n where the symmetry operation takes each piece to itself, then
|A| = kn. Here are examples :

1. A gardener has five red flowers, three yellow flowers, and two white flowers to plant
in a row. In how many ways can she do that ?
First consider all the flowers to be different. The number of ways to plant in a
row is the number of permutations which is 10!. We define an equivalence relation
among the plantings by identifying flowers of the same colour. Then the number
of equivalence classes is what we want. That number ×classes = 10!. In each
equivalence class, we simply permute all the flowers having the same colour. There
are 5!3!2! ways of doing that (product principle).

2. A multiset is a set where repetition is allowed to occur (it is simply a set with
an equivalence relation basically). It can be specified by saying how many times
each of its elements occurs. For instance {{f, o, o, r}} = {{o, f, o, r}} is a 4-element
multiset whose underlying set is {f, o, r}. It can be specified by simply the numbers
1 ≤ 1 ≤ 2 (corresponding to the number of times f, r, o occur in the multiset
respectively).
A “real-life” example of a k-multiset is handing k identical apples to n children
or to place k identical books on n distinct shelves. Actually, this problem can be
looked at in two ways :

(a) Counting solutions to m1 +m2 + . . .+mn = k where mi ≥ 0 is the number of
books on the ith shelf.

(b) From the perspective of the books, each book can “choose” to be placed on
any of the shelves. So record the “shelf number” (or the name of the child to
which the apple is handed out) for each of the books. Clearly, there can be
repetitions among the shelf numbers. Since we do not distinguish between the
books, this is a multiset. Indeed, if we place 2 books on the first shelf, 1 on the
second and 1 on the third (let’s say there are 3 shelves), then the multiset of
shelf numbers is {{1, 1, 2, 3}}. (The order does not matter because the books
are identical.)

The number of k-element multisets from [n] is C(n + k − 1, k). Indeed, this is
simply the number of tuples (x1, x2, . . . , xk) where n ≥ xi ≥ 1 and x1 ≤ x2 ≤ x3 . . ..
There is a bijection from this to k element subsets of [n − k + 1]. Indeed, take
(x1, . . . , xn)→ (x1, x2 + 1, x3 + 2, . . .).

2


	The road so far...
	Pigeon hole, permutations and combinations

