Notes for 12 Feb (Tuesday)

1 The road so far...

1. Defined rings and fields and gave examples.
2. Defined a ring structure on $\mathbb{Z} / m \mathbb{Z}$

2 Rings and Fields

Lemma 2.1. $[a]_{m}$ is a unit of $\mathbb{Z} / m \mathbb{Z}$ iff $\operatorname{gcd}(a, m)=1$.
As a corollary, the number of units of $\mathbb{Z} / m \mathbb{Z}$ is simply the number of numbers $1 \leq a \leq m$ that are coprime to m. This number is denoted as $\phi(m)$. (The Euler totient function.) Calculating this function requires some machinery that we will develop later.

Def : A nonzero element a of a commutative ring R for which there is some b, also not zero, with $a b=0$ is called a zero divisor. Note that $\mathbb{Z} / 6 \mathbb{Z}$ has zero divisors like $[2]_{6}$. It is easy to see that units cannot be zero divisors. (But please note that just because something is not a zero divisor does not mean it is a unit. For instance, $2 \in \mathbb{Z}$ is not a zero divisor but it is not a unit either.)

Lemma 2.2. Let R be a commutative ring and suppose $a \neq 0$ in R is not a zero divisor. Then if $b, c \in R$ such that $a b=a c$, then $b=c$.

Proof. Indeed, $a(b-c)=0$ and hence $b=c$ because a is not a zero divisor.
As a corollary, if a is not a zero divisor, then $a x=b$ has at most one solution. A commutative ring that has no non-trivial zero divisors is called an integral domain (or simply, a domain). Integers and polynomials are examples.

Theorem 1. Let R be an integral domain. For every $r, s \in R$, the equation $x^{2}-r x+s=0$ has at most two roots. On the other hand, if R has complementary zero divisors $a, b \neq 0$, i.e., $a b=0$, such that at least three of $0, a+b, a, b$ are distinct, then $x^{2}-(a+b) x=0$ has at least three roots in R.

Proof. Let us prove that second part first : $x(x-(a+b))=0$. So $x=0, a+b, a, b$ are roots. Three of these are distinct by assumption.
First part : Suppose a, b, c are three distinct roots. Then $r(a-c)=a^{2}-c^{2}=(a+c)(a-c)$ and $r(b-c)=b^{2}-c^{2}=(b+c)(b-c)$. By cancellation, $r=a+c=b+c$ and hence $a=b$. A contradiction.

The following theorem characterises units and zero divisors in $\mathbb{Z} / m \mathbb{Z}$.
Theorem 2. In $\mathbb{Z} / m \mathbb{Z}$

1. $[a]_{m}$ is a unit if $\operatorname{gcd}(a, m)=1$.
2. $[a]_{m}$ is a zero divisor, if $1<\operatorname{gcd}(a, m)<m$.
3. $[a]_{m}=[0]_{m}$ if $\operatorname{gcd}(a, m)=m$.

Proof. 1. $a x \equiv 1 \bmod m$ can be solved for if $\operatorname{gcd}(a, m)=1$ (by Bezout's identity).
2. Note that $[m / g c d(a, m)]_{m}[g c d(a, m)]_{m}=[0]_{m}$.
3. Trivial.

As a corollary,
Proposition 2.1. $\mathbb{Z} / m \mathbb{Z}$ is a field iff m is a prime.
Proof. If m is a prime, then $\operatorname{gcd}(a, m)=1$ for all $a \neq 0$. Hence a is a unit and $\mathbb{Z} / m \mathbb{Z}$ is a field.
If $\mathbb{Z} / m \mathbb{Z}$ is a field and $m=n_{1} n_{2}$, then $\left[n_{1}\right]_{m}\left[n_{2}\right]_{m}=[0]_{m}$, a contradiction unless m is a prime.

