
Notes for 12 March (Tuesday)

1 The road so far...

1. Proved that polynomial functions are the same as polynomials for infinite fields
(but not necessarily so for finite fields).

2. Developed the division and Euclidean algorithms. Stated Bezout’s identity for
polynomials.

2 Polynomials

Now we wish to prove a fundamental theorem of arithmetic for polynomials. Before that,
recall that an irreducible element e of a commutative ring R is a non-zero non-unit such
that if e = fg then f or g has to be a unit. Likewise, a prime element p is a non-zero
non-unit that if fg is divisible by p, then either f or g is divisible by p. On an integral
domain, primes are irreducibles.

Theorem 1. Irreducibles are primes in F[x].

Proof. (I am sorry. The proof I gave in the class today was incorrect. So was the
corresponding proof for integers on 31 Jan. I corrected the notes for that day.) If e is
an irreducible such that ek = fg, then by Bezout’s identity, if f is not divisible by e,
en + fm = 1 and hence e(ng + km) = g. Thus e is a prime.

As a HW you will show the following theorem holds.

Theorem 2. In F[x], every f factors uniquely (up to) units into a product of irreducible
polynomials. If we use monic irreducibles, the factors are unique upto permutation.

Just as in integers, we write f(x) = pe11 pe22 . . .. If ei > 1, then pi is said to be a
multiple factor with multiplicity ei. If pi(x) = x− a then a is said to be a multiple root
with multiplicity ei (if ei > 1 that is). Now we defined congruences : Let F be a field
and f, g,m ∈ F[x] (m /∈ F). Then f ≡m g iff f = g + hm where h ∈ F[x]. It can be
proven easily that ≡m is an equivalence relation. Here are some basic properties. For all
f1, f2, g, g1, g2, k ∈ F[x],

1. If f ≡m g, then kf ≡m kg.

2. If f1 ≡m g1, f2 ≡m g2, then f1 + f2 ≡m g1 + g2. Likewise for multiplication.

3. If f ≡m g then fn ≡m gn ∀ n ≥ 0.
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The set of f modulo m can be checked to be a ring under the above operations. Con-
structing it from F[x] is not entirely trivial. We may return to it later if time permits.

Lemma 2.1. Let f, g, h,m ∈ F[x] and m 6= 0. If hf ≡m hg, and h,m are coprime, then
f ≡m g.

Proof. h(f − g) = mk. Since h,m are coprime, f − g = mk1. (This follows from a
theorem we proved earlier.)

As in the case of integers, applying the Division theorem produces the following
lemmata.

Lemma 2.2. Let m be a polynomial of degree ≥ 0. If f is any polynomial in F[x], then
f ≡m g for a unique g s.t. deg(g) < deg(m) called the residue of least degree.

Lemma 2.3. Two polynomials are congruent iff their least degree residues are equal.

The remainder theorem shows that

Lemma 2.4. If f(x) ∈ F[x], then f(x) ≡x−r f(r).

Here are a couple of examples.

1. Find the least degree residues of xn modulo m(x) = x3 + x + 1 in F2[x] : Note
that 1, x, x2 are residues anyway. Now x3 ≡m −x − 1 ≡m x + 1 (because −1 = 1
in F2). x4 ≡ x.(x + 1) = x2 + x. x5 ≡ x2.(x + 1) = x3 + x2 ≡ x2 + x + 1.
x6 ≡ x5.x = x3 + x2 + x = x2 + x+ x+ 1 = x2 + 1 and x7 = x3 + x = 1. Therefore,
if n = 7q + r, then xn ≡m xr.

2. Let m(x) = x2 + x + 1 in F3[x]. Find the least degree residues of xn : Note that
1, x are residues anyway. Since x3 − 1 = (x − 1)(x2 + x + 1), x3 ≡m 1. Thus if
n = 3q + r, then xn ≡ xr.

Just as in the case of integers, we can solve linear “Diophantine”-type equations.

Theorem 3. Let a, b,m ∈ F[x]. There exists a solution u ∈ F[x] to au ≡m b iff d =
gcd(a,m)|b.

Proof. If there is a solution, then au = mk + b and hence d divides b. If d divides b,
then by Bezout’s identity, there exist k1, u1 such that au1−mk1 = d and hence u0 = b

d
u1

works.
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