Notes for 13 Feb (Wednesday)

1 The road so far...

1. Discussed the units and zero divisors of Z/mZ. Proved that Z/mZ is a field iff m
is a prime.

2. Defined integral domains and studied the number of roots of linear and quadratic
equations over commutative rings.

2 Rings and Fields

Theorem 1. If R is a finite commutative ring, and a € R is any nonzero element, then
a 18 either a unit or a zero divisor.

Proof. Suppose a is not a zero divisor. Then consider {1,a,...,a" '} where n = |R|.
Since a is not a zero divisor (unless 0 = 1 and hence the entire ring is R = {0}, in which
case the theorem is trivially true) none of the n elements above are 0. Since R — {0} has
n — 1 element, by PHP, there exist ¢ < j such that a° = a/. Inductively applying the
cancellation law (because a is not a zero divisor), 1 = a/~* hence, if a # 1, then o/~ is
the multiplicative inverse of a. O

So, in a finite commutative ring R such that m = |R|, every unit a has a smallest
natural d, < m such that a% = 1. Such a d, is called the order of a. For example, in Z,4,
[3]2 = [1]4 and hence [3], has order 2.

3 Fermat and Eulers’ theorems

Since Z/mZ is a finite commutative ring, every unit has an order. Also,

Lemma 3.1. Let m > 2. Then a and m are coprime iff there exists a 1 <t < m such
that [a'],, = [1]m-

Proof. Indeed, if [a'],, = [1], then a is a unit and hence is coprime to m. If a and m are
coprime, then a is a unit and by the above theorem we are done. O

For example, in Zz, all nonzero elements are units. [2]> = [ 1, [2]2 = [6], [2]* = [1]. So
ord(2) = 3. [3]* = [2], [3]° = [6], [3]* = [4], 3] = [5], [3]° = [1]. So ord(3) = 6. Now [4]* =
2), (4 = [Jord(4) = 3. [ = [4], 5 = (6], [5)* = (21, [5F = [3],[5]° = [1], ord(5) = 6.
(6] = [1],0rd(6) = 2. The order of an element is quite similar to the lem. Just like the
lem,



Lemma 3.2. If e is the order of |a],,, and [a)/ = [1], then e divides f.

Proof. Suppose f = eq+r. Then [a]/ = [a]°qla]” = [a]" = [1] which means that r = 0
because e is the smallest such integer. O]

Moreover,

Lemma 3.3. If ord(|a],) = e, and d > 0, then ord([a]®) = u = YEICOR

Proof. Note that ([a]?)* = [1]. We have to prove that such a v is the smallest. Indeed, if

r satisfied [a]%r = 1, then dr is a multiple of e and hence dr > % which implies that

r > Uu. O

Here is an important result that tells us something about the order of all elements of
Y/

D

Theorem 2. (Fermat’s little theorem) : [a]b~" = [1], where p is a prime.

Proof. Take [a].[1], [a].[2], ..., [a].[p—1]. If we multiply these togther, we get [a]P~*[1].[2].[3]. ...
1]. Noting that these numbers are all distinct, non-zero, and they are p — 1 in number,
they have to be a permutation of 1,2...,p — 1. Thus, [aP7![1].[2].... = [1].[2] ... which
means that [a]P~! = [1],,. O

Therefore, the order of any element in Z, — {0} divides p — 1. (This is a special case
of a more general phenomenon.)
For more general Z/mZ, here is Euler’s theorem.

Theorem 3. Let ¢(m) be the number of numbers < m that are coprime to m. Then
[a]%m) = (1], for every unit [al,, € Z/mZ.

Proof. Let G be the group of units of Z/mZ. G consists of numbers that are coprime to

m. If [a],, is such a number, consider [a],,[1]m[alm[Z2]m - - - [@]m[Tpn)|m- Clearly this set
is a permutation of [1],,,[2],,.... Therefore their products are equal which means that
@™ = [t 0

Now we need to know how to calculate ¢(m). That is given by the following theorem.
Theorem 4. 1. Ifp is a prime, ¢(p) =p — 1.

2. If p is a prime, ¢(p°) = p*~L(p—1).

3. If a and b are coprime, then ¢(ab) = ¢(a)p(b).
Proof. Part 3 will be given as a HW. The other two parts are as follows.

1. Clearly, 1,2...,p — 1 are coprime to p. Thus ¢(p) =p — 1.

2. We induct on e. For e = 1 we are done. Assume truth for 1,2,...,e — 1. p¢! <
a < p° is divisible by p iff a = pb where p=2 < b < p°~1. Therefore, the number
of numbers < p¢ divisible by p are p~! — ¢(p°~!) + (p°~! — p*~2) = p~!. Thus,
o(p°) =p° —p



]

Actually, Euler’s theorem is a special case of a more general theorem (which is itself
a special case of Lagrange’s theorem).

Theorem 5. For any element a € G where G is a commutative group, al = 1.

Proof. Take the set a.1,a.x2,a.73...,a.7)g—1. This set is simply a permutation of the
group. Hence, al®l1.2y9.25... = 1.29.25.... Therefore, al = 1. O
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