
Notes for 13 Feb (Wednesday)

1 The road so far...

1. Discussed the units and zero divisors of Z/mZ. Proved that Z/mZ is a field iff m
is a prime.

2. Defined integral domains and studied the number of roots of linear and quadratic
equations over commutative rings.

2 Rings and Fields

Theorem 1. If R is a finite commutative ring, and a ∈ R is any nonzero element, then
a is either a unit or a zero divisor.

Proof. Suppose a is not a zero divisor. Then consider {1, a, . . . , an−1} where n = |R|.
Since a is not a zero divisor (unless 0 = 1 and hence the entire ring is R = {0}, in which
case the theorem is trivially true) none of the n elements above are 0. Since R−{0} has
n − 1 element, by PHP, there exist i < j such that ai = aj. Inductively applying the
cancellation law (because a is not a zero divisor), 1 = aj−i hence, if a 6= 1, then aj−i−1 is
the multiplicative inverse of a.

So, in a finite commutative ring R such that m = |R|, every unit a has a smallest
natural da < m such that ada = 1. Such a da is called the order of a. For example, in Z4,
[3]24 = [1]4 and hence [3]4 has order 2.

3 Fermat and Eulers’ theorems

Since Z/mZ is a finite commutative ring, every unit has an order. Also,

Lemma 3.1. Let m ≥ 2. Then a and m are coprime iff there exists a 1 ≤ t < m such
that [at]m = [1]m.

Proof. Indeed, if [at]m = [1]m, then a is a unit and hence is coprime to m. If a and m are
coprime, then a is a unit and by the above theorem we are done.

For example, in Z7, all nonzero elements are units. [2]2 = [4], [2]3 = [6], [2]4 = [1]. So
ord(2) = 3. [3]2 = [2], [3]3 = [6], [3]4 = [4], [3]5 = [5], [3]6 = [1]. So ord(3) = 6. Now [4]2 =
[2], [4]3 = [1]ord(4) = 3. [5]2 = [4], [5]3 = [6], [5]4 = [2], [5]5 = [3], [5]6 = [1], ord(5) = 6.
[6]2 = [1], ord(6) = 2. The order of an element is quite similar to the lcm. Just like the
lcm,
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Lemma 3.2. If e is the order of [a]m, and [a]f = [1], then e divides f .

Proof. Suppose f = eq + r. Then [a]f = [a]eq[a]r = [a]r = [1] which means that r = 0
because e is the smallest such integer.

Moreover,

Lemma 3.3. If ord([a]m) = e, and d > 0, then ord([a]d) = u = e
gcd(d,e)

.

Proof. Note that ([a]d)u = [1]. We have to prove that such a u is the smallest. Indeed, if
r satisfied [a]dr = 1, then dr is a multiple of e and hence dr ≥ de

gcd(d,e)
which implies that

r ≥ u.

Here is an important result that tells us something about the order of all elements of
Zp.

Theorem 2. (Fermat’s little theorem) : [a]p−1p = [1]p where p is a prime.

Proof. Take [a].[1], [a].[2], . . . , [a].[p−1]. If we multiply these togther, we get [a]p−1[1].[2].[3]. . . . [p−
1]. Noting that these numbers are all distinct, non-zero, and they are p − 1 in number,
they have to be a permutation of 1, 2 . . . , p− 1. Thus, [a]p−1[1].[2]. . . . = [1].[2] . . . which
means that [a]p−1 = [1]p.

Therefore, the order of any element in Zp − {0} divides p− 1. (This is a special case
of a more general phenomenon.)
For more general Z/mZ, here is Euler’s theorem.

Theorem 3. Let φ(m) be the number of numbers ≤ m that are coprime to m. Then

[a]
φ(m)
m = [1]m for every unit [a]m ∈ Z/mZ.

Proof. Let G be the group of units of Z/mZ. G consists of numbers that are coprime to
m. If [a]m is such a number, consider [a]m[1]m[a]m[x2]m . . . [a]m[xφ(m)]m. Clearly this set
is a permutation of [1]m, [2]m . . .. Therefore their products are equal which means that

[a]
φ(m)
m = [1]m.

Now we need to know how to calculate φ(m). That is given by the following theorem.

Theorem 4. 1. If p is a prime, φ(p) = p− 1.

2. If p is a prime, φ(pe) = pe−1(p− 1).

3. If a and b are coprime, then φ(ab) = φ(a)φ(b).

Proof. Part 3 will be given as a HW. The other two parts are as follows.

1. Clearly, 1, 2 . . . , p− 1 are coprime to p. Thus φ(p) = p− 1.

2. We induct on e. For e = 1 we are done. Assume truth for 1, 2, . . . , e − 1. pe−1 <
a ≤ pe is divisible by p iff a = pb where pe−2 < b ≤ pe−1. Therefore, the number
of numbers ≤ pe divisible by p are pe−1 − φ(pe−1) + (pe−1 − pe−2) = pe−1. Thus,
φ(pe) = pe − pe−1.
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Actually, Euler’s theorem is a special case of a more general theorem (which is itself
a special case of Lagrange’s theorem).

Theorem 5. For any element a ∈ G where G is a commutative group, a|G| = 1.

Proof. Take the set a.1, a.x2, a.x3 . . . , a.x|G|−1. This set is simply a permutation of the
group. Hence, a|G|1.x2.x3 . . . = 1.x2.x3 . . .. Therefore, a|G| = 1.
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