
Notes for 13 March (Wednesday)

1 The road so far...

1. Irreducibles are the same as primes in F[x] (If e is an irreducible such that ek =
fg, then by Bezout’s identity, if f is not divisible by e, en + fm = 1 and hence
e(ng + km) = g. Thus e is a prime.)

2. Stated the fundamental theorem of arithmetic for polynomials.

3. Defined congruences, the ring Fm[x] and solved linear Diophantine equations au ≡m
b.

2 Polynomials

If u is any other solution, then v = u − u0 solves av = mk. Therefore, v = m
d
k2. For

example,
In F3[x], let m(x) = x3 + x + 2 and f(x) = x2 + 2x. Find z(x) so that fz ≡m 1, i.e.,
fz + mw = 1. We use the extended Euclidean algorithm : m = f(x − 2) + 2x + 2. So
x2 + 2x = (2x+ 2).(2x+ 2)− 1. So −1 = x2 + 2x− (2x+ 2)(2x+ 2) = x2 + 2x− (m−
f(x− 2))(2x+ 2) = f(1 + (x− 2)(2x+ 2))−m(2x+ 2).
As in the case of integers we can completely characterise the units and zero-divisors.

Theorem 1. Let m(x) ∈ F[x] have deg > 0. For f(x) ∈ F[x],

1. f is a unit modulo m iff gcd(m, f) = 1.

2. f is a zero divisor modulo m iff f is not divisible by m and gcd(m, f) has degree
≥ 1.

We can now state and prove the Chinese remainder theorem.

Theorem 2. Let a1, . . . , ad,m1,m2, . . . ,md(x) ∈ F[x] such that mi are pairwise coprime.
Then there exists an f ∈ F[x] such that f ≡mi

ai ∀ i. Such an f is unique up to multiples
of m1m2 . . .md.

Proof. Firstly, we find ei(x) ∀ i such that ei(x) ≡mi
1 and ei(x) ≡mj

0 ∀ i 6= j. This
can be done as follows : Firstly, let ei(x) = fi(x)Πj 6=imj(x). Since gcd(mi,Πj 6=imj) = 1,
by Bezout’s identity we can find such an fi and hence ei. Now let f =

∑
i aiei. Then

f ≡m ai. If g is any other solution, then g− f ≡mi
0. By coprimeness and induction one

can easily prove that g − f is a multiple of m1m2 . . .md.
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Applying the remainder theorem and the Chinese remainder theorem, we see the
following corollary.

Theorem 3. If n0, n1 . . . , nd are distinct elements of F and s0, . . . sd are arbitrary ele-
ments of F, there exists a unique q ∈ F[x] of degree ≤ d such that q(ni) = si.

This theorem is called the Lagrange Interpolation theorem. We can in fact give an
explicit formula for q. This formula comes from an explicit formula for ei(x) such that

ei(ni) = 1, ei(nj) = 0 ∀ i 6= j. Let g(x) = (x− n0)(x− n1) . . . (x− nj) and gi(x) = g(x)
x−ni

.

Note that gi(nj) = 0 ∀ i 6= j. It is easy to see that ei(x) = gi(x)
gi(ni)

does the job (and

has degree ≤ d). The Chinese Remainder theorem tells us that q =
∑
siei is the unique

polynomial of degree ≤ d that interpolates. A nice way of writing gi is as follows : Since
g′(ni) = (ni − n0) . . . (ni − ni−1)(ni − ni+1) = g(ni), ei(x) = gi(x)

g′(ni)
.

3 The fundamental theorem of algebra and algebraic

numbers

Note that x + a = 0 where a > 0 ∈ N can be solved in Z but not in N. However, if
a ∈ Z, it continues to have a solution in Z. Likewise, ax + b = 0 can be solved only in
Q. However, x2 = 2 cannot be solved in Q. One can invent the real numbers R (the
crucial point being the least upper bound property) to solve this equation. Unfortunately,
x2 + 1 = 0 cannot be solved in real numbers and so we invent C.

The usual definition of C notwithstanding, here is another one : Consider the poly-
nomials R[x]. We want to morally substitute x =

√
−1. So x2 should be replaced by

−1 everywhere. One way to achieve this is as follows : Define an equivalence relation on
R[x] as p(x) ≡ q(x) if p(x) = q(x) + h(x)(x2 + 1) for some h(x) ∈ R[x]. It is easy to see
that this is an equivalence relation. The set of equivalence classes is denoted as C and it
equals {[a+ bx]} where a, b ∈ R. Addition and multiplication are inherited from R[x]. It
is not hard to prove that the resulting object is a field isomorphic to our usual definition
of C.

What about other polynomial equations with C coefficients ?

Theorem 4. Every degree-n polynomial in C[x] has exactly n complex roots (counted
with multiplicity)

This so-called Fundamental Theorem of Algebra is not at all easy to prove. The
fastest way to do this is by using complex analysis (or at least power series). Here is
a definition : An algebraic number is a complex number satisfying a polynomial with
rational coefficients. The set of algebraic numbers is countable whereas complex numbers
are uncountable (and so are reals). So most real numbers and complex numbers are not
algebraic. They are “transcendental”. Here is a concrete example of a transcendental
number. Concrete examples of transcendental numbers are produced by the following
theorem (actually a special case of the theorem is stated here) : Lindemann-Weierstrass
theorem (proof on Wikipedia).

Theorem 5. If x 6= 0 is algebraic then ex is transcendental.

So, e, π, e
√
2, . . . are transcendental.
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4 Symmetric polynomials

The next order of business is to actually find formulae to find the roots of polynomials. Be-
fore that, we need an important theorem in the theory of polynomials. Firstly, here is the
definition of a symmetric polynomial : A polynomial p(x1, x2, . . . , xn) ∈ R[x1, x2 . . . , xn]
where R is a commutative ring is called a symmetric polynomial if p(xσ(1), xσ(2), . . .) =
p(x1, . . . , xn) ∀ σ ∈ Sn. For example,

1. e1(X) =
∑

iXi, e2(X) =
∑

i<j XiXj, etc. Basically, coefficients of (X −X1)(X −
X2) . . . (X −Xn) are symmetric polynomials. These polynomials ek(X) are called
the elementary symmetric polynomials (and there are n of them).
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