
Notes for 14 Feb (Thursday)

1 The road so far...

1. Proved Fermat’s and Euler’s theorems.

2. Wrote a formula for φ(m).

2 Rings and Fields

Here is a beautiful characterisation of primes (called Wilson’s theorem).

Theorem 1. [(n− 1)!]n = [−1]n iff n is a prime.

Proof. If n is composite, then n is divisible by a prime 2 ≤ q ≤ n−2. But (n−1)! ≡n −1
and hence (n− 1)! ≡q −1 but (n− 1)! ≡q 0.
If n = p is a prime, the result is trivial for p = 2. So assume that p is an odd prime. Every
non-zero [a]p has a multiplicative inverse. Note that x2 ≡p 1 has exactly two solutions
x ≡ ±1 in the integral domain Zp. Hence, other than [±1]p, the factors of (p − 1)! can
be arranged in unequal pairs whose product is [1]p. This proves Wilson’s theorem.

Wilson’s theorem in turns proves another important result.

Theorem 2. For any prime p ≡4 1, [−1]p = [q2]p for some integer q.

Proof. Let p = 2m + 1. Then note that [−1]p = [(p − 1)!]p = [1.(p − 1)]p.[2.(p −
2)]p . . . [m.(p − m)]p = [1].[−1].[2].[−2] . . . = [m!]2p(−1)m. Thus if m is even, we are
done.

Now we prove the following theorem in number theory.

Theorem 3. A prime p can be written as a2 + b2 for two integers a, b iff p ≡4 1.

It is easy to see that if p = a2 + b2, then p ≡4 1. The converse is much harder.
To prove it, we need to introduce a new construction, in fact, a new ring - The ring of
Gaussian integers Z[

√
−1] ⊂ C consisting of a + b

√
−1 where a, b ∈ Z. It is easy to see

that this subset is a subring of the field C.
While it is not relevant for our present purposes, here are a couple of definitions :

An element p in a commutative ring R is called an irreducible if it is not a product of
two non-units.
An element p in a commutative ring R is called a prime, if whenever ab is divisible by p,
either a or b is divisible by p.
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In an integral domain (one with no zero divisors, i.e., the cancellation rule holds), primes
are irreducibles. (Part of your HW.) However, the converse need not be true. It turns
out to be true for certain kinds of rings where ”unique factorisation into irreducibles”
(the fundamental theorem of arithmetic) holds. It turns out that Z[

√
−1] is such a ring

anyway.
Two elements a, b ∈ R where R is a commutative ring are called associate to each other
if a = bc where c is a unit. For instance, ±a are associate in Z for any a > 0.

Returning to Z[
√
−1], note that 2 is not an irreducible because 2 = (1 +

√
−1)(1 −√

−1) and these factors are not units. Clearly, ±1,±
√
−1 are units in the ring but are

there others ?
Def : N : Z[

√
−1] → Z given by N(a + b

√
−1) = a2 + b2 = (a + b

√
−1)(a − b

√
−1) is

called the norm. (So the theorem we want is : Is p = N(α) for some α ∈ Z ?) Here are
its properties (easy to prove).

1. N(α) = 0 iff α = 0

2. N(αβ) = N(α)N(β).

3. N(α) = 1 iff α is a unit.

4. The complete set of units in Z[
√
−1] is {±1,±

√
−1}.

The deepest property of Z[
√
−1] is the following Euclidean division algorithm.

Theorem 4. Given α, β 6= 0 ∈ Z[
√
−1], there exists κ, ρ ∈ Z[

√
−1] such that α = κβ+ ρ

where N(ρ) < N(β).

Proof. Divide the plane into boxes formed out of β,
√
−1β, i.e., consider the vertices

βZ[
√
−1]. α will lie in one of these boxes. Let κ.β be a closest corner to α in that

box. Let ρ = α − κβ. Clearly the length of ρ is less than half of the diagonal, i.e.,√
N(ρ) ≤

√
2
2

√
N(β) <

√
N(β).

Def : An element δ ∈ Z[
√
−1] is called the gcd of α, β if δ is an element of maximal

norm that divides both.
It is not hard to see that the gcd can be calculated using the Euclidean algorithm and

that the Bezout identity holds. (HW)

Theorem 5. Let 0 6= π ∈ Z[
√
−1]. Then π is a prime element iff it is irreducible.

The proof of this theorem is quite similar to that for integers. It will be given as a
HW. Here is an interesting lemma.

Lemma 2.1. If π ∈ Z[
√
−1] is such that N(π) is a prime integer, then π is a Gaussian

irreducible and hence a Gaussian prime.

Proof. If π = αβ, then N(α)N(β) = N(π). Thus N(α) = 1 or N(β) = 1 which means
that one of them is a unit. So π is irreducible and hence a prime.

Now we prove the number theoretic result on sum of squares.
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Proof. If p ≡4 1, then there exists a c ∈ Z satisfying [c]2p = [−1]p. Hence, p divides

(c −
√
−1)(c +

√
−1) in Z[

√
−1]. But p does not divide c ±

√
−1. Therefore, p is not a

Gaussian prime and hence reducible. This means that p = αβ where N(α), N(β) 6= 1.
Thus p2 = N(p) = N(α)N(β) which means that N(α) = p = N(β). Hence p = αᾱ where
α is a Gaussian prime.
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