Notes for 14 March (Thursday)

1 The road so far...

1. Proved the Chinese Remainder and the Lagrange interpolation theorems.
2. Constructed \mathbb{C} out of $\mathbb{R}[x]$. Stated the fundamental theorem of algebra.
3. Defined algebraic and transcendental numbers. Stated Lindmann-Weierstrass.
4. Defined symmetric and elementary symmetric polynomials.

2 Symmetric polynomials

Examples:

1. $p_{k}\left(x_{1}, x_{2} \ldots\right)=x_{1}^{k}+x_{2}^{k}+\ldots+x_{n}^{k}$ are called power sums.
2. $\Pi_{1 \leq i \leq j \leq n}\left(X_{i}-X_{j}\right)^{2}$.

The most important theorem in the theory of symmetric polynomials is the fundamental theorem :

Theorem 1. Every symmetric polynomial $f\left(x_{1}, \ldots, x_{n}\right)$ can be written uniquely as a polynomial of the elementary symmetric polynomials $e_{k}(x)$, i.e., $f\left(x_{1}, \ldots\right)=q\left(e_{1}(x), e_{2}(x), \ldots, e_{n}(x)\right)$ where $q \in R\left[y_{1}, y_{2}, \ldots, y_{n}\right]$ is unique.

Before we prove this theorem, here is another definition : A homogeneous polynomial $p\left(x_{1}, x_{2} \ldots, x_{n}\right)$ is one such that the degree of every term is the same where $\operatorname{deg}\left(x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots\right)$ is defined as $r_{1}+r_{2}+\ldots$. A term of p is defined recursively as a term of $a_{k}\left(x_{1}, \ldots, x_{n-1}\right)$ times x_{n}^{k} where $p(x)=\sum a_{k}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}^{k}$. Every term is of the form $a_{I} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots$ (inductively proven). Firstly,

Theorem 2. Every polynomial can be uniquely written as a sum of homogeneous polynomials. Every symmetric polynomial can be be uniquely written as a sum of homogeneous symmetric polynomials.

This will be given as a HW problem. Now we prove the fundamental theorem of symmetric polynomials. We leave some of the proof as a HW. This proof is standard (one resource is Wikipedia.)

Proof. Without loss of generality, we may assume that our polynomial is a homogeneous symmetric polynomial. We use double induction on n and the degree d (after fixing n). For $n=1$, every polynomial is symmetric. Assume truth for $1,2 \ldots, n-1$. For n we shall induct on the degree d. For $d=1$, we are done trivially. Assume truth for $1,2 \ldots, d-1$.

Every such $p\left(x_{1}, \ldots, x_{n}\right)=P_{\text {lac }}\left(x_{1}, \ldots, x_{n}\right)+x_{1} x_{2} \ldots x_{n} q$ where $p_{\text {lac }}$ (the lacunary part) is defined as the sum of terms that do not contain at least one of the x_{j}. Since p is symmetric, $p_{\text {lac }}$ is determined by only those terms that do not contain x_{n}. Therefore $p_{\text {lac }}$ is determined by $p\left(x_{1}, \ldots, x_{n-1}, 0\right)$ which is a symmetric polynomial in fewer variables and hence equal to $\tilde{q}\left(e_{1, n-1}, e_{2, n-1}, \ldots, e_{n-1, n-1}\right)$. Now the polynomial $r\left(x_{1}, \ldots, x_{n}\right)=$ $\tilde{q}\left(e_{1, n}, e_{2, n} \ldots, e_{n-1, n}\right)$ is a symmetric polynomial in n variables of degree $n-1$ such that $r\left(x_{1}, \ldots, x_{n-1}, 0\right)=p\left(x_{1}, \ldots, x_{n-1}, 0\right)$. Therefore, $r_{\text {lac }}=p_{\text {lac }}$. Now $P-R=e_{n} Q$ where Q is a homogeneous symmetric polynomial of smaller degree and hence by the induction hypothesis we are done with existence.
Uniqueness is similar and given as HW.
An example of this is as follows: We want to express $x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$ in terms of elementary symmetric polynomials. This is already in the lacunary form. So take $x_{1}^{3}+x_{2}^{3}$. Now consider $\left(x_{1}+x_{2}\right)^{3}-\left(x_{1}^{3}+x_{2}^{3}\right)=3 x_{1} x_{2}\left(x_{1}+x_{2}\right)$. Therefore consider $\left(x_{1}+x_{2}+x_{3}\right)^{3}-$ $3\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)\left(x_{1}+x_{2}+x_{3}\right)-x_{1}^{3}-x_{2}^{3}-x_{3}^{3}=-3 x_{1} x_{2} x_{3}$. So we are done.

3 Cubics, Quartics, Quintics, etc

Suppose we want to solve $x^{3}+b x^{2}+c x+d=0$. Here is Lagrange's method for it : Let x_{1}, x_{2}, x_{3} be the roots. Consider the quantity $t=x_{1}+\omega x_{2}+\omega^{2} x_{3}$ where ω is a primitive cube root of unity, i.e., $1, \omega, \omega^{2}$ are the cube roots. There are 6 possible values $t_{1}, t_{2}, \ldots, t_{6}$ of this expression depending on the order of x_{1}, x_{2}, x_{3}. The t_{i} are the roots of the 6th order polynomial $p=\left(x-t_{1}\right)\left(x-t_{2}\right) \ldots=0$. This polynomial's coefficients are symmetric in t_{i} and hence in x_{i}. Therefore, in principle, they can be written using the elementary symmetric polynomials in x_{i}, i.e., in terms of b, c, d. Note that if we choose an ordering, then $t_{1}, \omega t_{1}, \omega^{2} t_{1}, t_{2}, \omega t_{2}, \omega^{2} t_{2}$ are the six roots where $t_{1}=x_{1}+\omega x_{2}+\omega^{2} x_{3}$ and $t_{2}=x_{2}+\omega x_{1}+\omega^{2} x_{3}$. Now $p=\left(x^{3}-t_{1}^{3}\right)\left(x^{3}-t_{2}^{3}\right)=0$. This is a quadratic in x^{3} whose coefficients can in principle be written using b, c, d and hence t_{1}, t_{2} can be solved for in terms of b, c, d. Therefore x_{1}, x_{2}, x_{3} can be recovered. In modern terms, the variables $t_{0}=x_{1}+x_{2}+x_{3}, t_{1}=x_{1}+\omega x_{2}+\omega^{2} x_{3}, t_{2}=x_{2}+\omega x_{1}+\omega^{2} x_{2}$ are said to be the discrete Fourier transform of x_{1}, x_{2}, x_{3}.

