
Notes for 19 March (Tuesday)

1 The road so far...

1. Proved the fundamental theorem of symmetric polynomials.

2. Discussed an “algorithm” to solve the cubic.

2 Cubics, Quartics, Quintics, etc

For the quartic x4 + bx3 + cx2 + dx+ e = 0, in principle one can reduce the “Resolvent”
equation for 24 values of t to a sixth order equation for t4 which can further be reduced
to a quadratic. But let us use a slightly different set of variables s0 = x0 + x1 + x2 + x3,
s1 = x0 − x1 + x2 − x3, s2 = x0 + x1 − x2 − x3, and s3 = x0 − x1 − x2 + x3. Note that s0
is determined whereas s21, s

2
2, s

2
3 are roots of (x− s21)(x− s22)(x− s23) = 0. The coefficients

are symmetric polynomials in xi and hence determined. This is a cubic and hence can
be solved.

If we apply these ideas to the quintic, the usual resolvent equation for t has degree
120 but can be reduced to degree 24 in t5. Unfortunately, no trick like the one for the
quartic works because all the fifth roots of unity are primitive. This already suggested to
Lagrange that it might be impossible to solve the equation.

In fact, the Abel-Ruffini theorem states that there is no formula involving a finite
sequence of operations from +,−, x, /, ()1/n applied on the coefficients that can work for
all polynomials of degree 5. Clearly, the permutations of the roots play a role. A simple
way to prove this (due to Arnold) is in a youtube video called “Short proof of Abel’s
theorem that 5th degree polynomial equations cannot be solved”. Here is a brief sketch
of the proof. To make it fully rigorous would require some knowledge of either topology
(covering spaces) or complex analysis (winding numbers).

1. Firstly, observe that −b±
√
b2−4ac
2a

is not a continuous function if a, b, c are complex
numbers !! In fact,

√
z itself cannot be defined as continuous function on the

complex plane. The obvious definition r1/2eiθ/2 is problematic on the positive x-
axis where θ abruptly jumps from 0 to 2π. Using this fact and the fact that y2 = z
has at most two solutions, one can prove that there is no continuous square root
defined on any ball containing the origin. The same kind of a proof works for nth

roots.

2. Secondly, if you travel around the origin k times,
√
z picks up a sign of (−1)k.

Likewise, for higher roots.
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3. Thirdly, assume that the quintic has distinct roots and that they are given by a
formula involving a finite sequence of arithmetic operations +,×, /,− and the nth

root ()1/n on the coefficients. If you change the coefficients of the quintic in the
complex plane continuously, going through quintics having distinct roots and come
back to the original quintinc at time t = 1, then the set of roots comes back to the
original set. However, the ordering might change, i.e., the roots will get permuted.

4. In fact, any permutation of the roots can be realised this way by simply considering
a5(z−z1(t))(z−z2(t)) . . . where zi(t) are all distinct for 0 ≤ t ≤ 1 and are continuous
functions of t.

5. Suppose the formula for the roots is (arithmetic operations on the coefficients)1/n

(or an arithmetic combination of such “1-nested radicals”) for the sake of argument.
Then a loop of coefficients γ1(t) may not preserve such an expression. However, an
expression of the form γ1(t)γ2(t)γ

−1
1 γ−12 will preserve it !! (In fact any finite sequence

of such “commutator” loops will preserve the hypothetical formula.) So if there is
a non-trivial commutator that permutes the roots, then we have a contradiction
because the formula for the roots is left unchanged.

6. Suppose instead that the formula for the roots involves N -nested radicals, then a
commutator of a commutator of a commutator.... (N times) will preserve such an
expression.

7. It turns out that for every N , there is a finite multiplication of commutator of a
commutator of ... (N times)-type expressions of permutations in S5 that is non-
trivial, i.e., it permutes the roots non-trivially. However, this means that no finite
nesting of radicals works.

3 Back to groups...

We saw the definition of a group G, subgroups H ⊂ G, cartesian product G×H, the defi-
nition of group homomorphisms f : G→ H, examples of Abelian (like Zn under addition)
and non-Abelian (like Sn, invertible matrices, etc) groups, and a generalisation of Fer-
mat’s little theorem theorem for Abelian groups. The image of a group homomorphism
can be easily proven to be a subgroup of the target. By the way, Z2 × Z2 is sometimes
called Klein’s four group. The points were largely to produce convenient language to
study questions regarding permutations (cyclic decomposition), to define rings, and to
give a proof of φ(ab) = φ(a)φ(b). However, subgroups of Sn (called “permutation groups
of substitutions” originally by Galois) arose out of the study of polynomials and whether
the quintic can be solved. Another source of groups is through “symmetries” (whether
geometric ones or otherwise).
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