Notes for 20 March (Wednesday)

1 The road so far...

1. Discussed quartics and the Abel-Ruffini theorem for quintics.
2. Recalled groups. Groups study symmetry.

2 Back to groups...

Before we go on further, here is a general result whose proof is straightforward.
Lemma 2.1. If $H, S \subset G$ are two subgroups, then $H \cap S$ is also a subgroup.
Take a flat square centred at the origin. What distance-preserving operations of \mathbb{R}^{2} take this square to itself? Firstly, it can be shown that all distance-preserving maps are combinations of rotations, translations, and reflections about the x-axis. Since the centre is supposed to be preserved, translations are not allowed. Let r be the rotation of $\frac{\pi}{2}$ anticlockwise and s be a reflection about the x-axis. By repeatedly applying these operations one gets a group. Note that $r^{4}=1, s^{2}=1$ and $r s=s r^{-1}$. So this group is actually a finite group having 8 elements $1, r, r^{2}, r^{3}, s, r s, r^{2} s, r^{3} s$. This group is not Abelian. It is a subgroup of S_{4} (obviously, because we are permuting the vertices). It is an example of a "Dihedral group". The general group of symmetries of the n-gon can be proven to be abstractly $1, r, r^{2}, \ldots, r^{n-1}, s, r s, r^{2} s, \ldots, r^{n-1} s$ where $r^{n}=s^{2}=1$ and $r s=s r^{-1}$. This group is quite useful in the study of plane figures and in related fields like crystals in chemistry and physics.

Note that e, $r, s, r s$ unfortunately does not form a subgroup of S_{6} (say) because r^{2} is not in it (for instance). However, $e, r, r^{2}, r^{3}, \ldots, r^{5}$ is a subgroup of S_{6}. It generalises as follows : Given a group G and an element $x \in G$, the set $\langle x\rangle=\left\{e, x, x^{-1}, x^{2},\left(x^{-1}\right)^{2}, x^{3},\left(x^{-1}\right)^{3}, \ldots,\right\}$ is a subgroup and it is said to be "generated by x ". Here is a small lemma whose proof is trivial.

Lemma 2.2. If any subgroup $H \subset G$ contains x, then it contains $\langle x\rangle$.
The order of x is the smallest positive integer n such that $x^{n}=1$. If such an n does not exist, then x is said to have infinite order. (Caution : For fields, a similar property is said to be "characteristic 0 ".) Note that the order of x is the size of $\langle x\rangle$. We already proved that in a finite group with n elements, every element a has a finite order $\leq n$. If $G=\langle x\rangle$, then G is said to be a cyclic group with generator x. Note that cyclic groups are Abelian.

1. $(\mathbb{Z},+)$ is cyclic and generated by 1 (as well as by -1$)$.
2. $\left(\mathbb{Z}_{n},+\right)$ is cyclic and generated by $[1]_{n}$. In fact, suppose $[a]_{n}$ is a generator. Then $[1]_{n}=k[a]_{n}$ for some k and hence $\operatorname{gcd}(a, n)=1$. This condition is sufficient because if $\operatorname{gcd}(a, n)=1$, there exists a k such that $[k][a]=[1]$ and hence $[n]=n k[a]$. So there are $\phi(n)$ generators.
3. The Dihedral group D_{n} where $n \geq 3$ is not even Abelian and hence not cyclic.
4. $K_{4}=\left(\mathbb{Z}_{2},+\right) \times\left(\mathbb{Z}_{2},+\right)$ is not cyclic (a brute-force calculation shows that no element can be a generator). Actually, it can be easily seen that K_{4} is isomorphic to D_{2}.
5 . The $n^{\text {th }}$ roots of unity form a group under multiplication. This group is in fact cyclic because it is generated by $\omega=e^{2 \pi i / n}$. A generator is called a primitive root of unity. Note that if ω^{k} is a generator, then $\left(\omega^{k}\right)^{a}=\omega$ and hence $[k a]_{n}=[1]_{n}$ which is possible iff $\operatorname{gcd}(a, n)=1$. In fact, if $\operatorname{gcd}(a, n)=1$ then ω^{k} is a generator.
