Notes for 21 March (Thursday)

1 The road so far...

- 1. Studied the Dihedral group D_n .
- 2. Defined and gave examples and non-examples of Dihedral groups.

2 Back to groups...

Note that as a consequence of every element of a finite group having a finite order,

Lemma 2.1. If G is a finite group, a non-empty subset $H \subset G$ is a subgroup iff it is closed under group multiplication *.

Also, here is another lemma about the existence of non-trivial subgroups.

Lemma 2.2. If G is a finite Abelian group then G has a non-trivial subgroup unless its size n is 1 or a prime p.

Proof. If n is not a prime or 1, then n = rs for r, s > 1. For each $a \in G$ consider $\langle a \rangle$. If $\langle a \rangle \neq G$ for some a, we are done. If $\langle a \rangle = G$ then $\langle a^r \rangle$ has size s and is hence a proper subgroup.

We have the following theorem about cyclic groups.

Theorem 1. *1. Every subgroup of* \mathbb{Z} *is cyclic.*

- 2. Even better, every subgroup of a cyclic group is cyclic.
- *Proof.* 1. If $H \subset \mathbb{Z}$ is a subgroup, then let n be the smallest positive integer in H (if there is no such n then $H = \{0\} = \langle 0 \rangle$). The claim is that every $a \in H$ is divisible by n. If not, then a = kn + r where r < n. But $a kn \in H$ because H is a subgroup. Therefore we have a contradiction.
 - 2. Suppose $G = \langle x \rangle$ and $K \subset G$ is a subgroup that is not trivial. Every element of K is a power of x. Let $H = \{n \in \mathbb{Z} | x^n \in K\}$. Clearly $H \subset \mathbb{Z}$ is a subgroup and hence cyclic. Suppose it is generated by a. Then $\langle x^a \rangle = H$.

Here is a definition : The subgroup $\langle S \rangle \subset G$ generated by a set S is defined to be a subgroup containing S such that any subgroup $H \subset G$ that contains S also contains $\langle S \rangle$. It is easy to see that such a subgroup is unique (indeed if there are two, each is contained within the other). Now define a word in G formed by elements of S as an expression of the form $x_1^{i_1} * x_2^{i_2} * x_3^{i_3} \dots * x_a^{i_a}$ where $x_u \in S, i_u \in \mathbb{Z}$ (not necessarily distinct). The set of all words from S forms a subgroup W_S of G containing S. In fact,

Lemma 2.3. $W_S = \langle S \rangle$.

Proof. If $S \subset H$, then for any collection $x_1, \ldots, x_a \in S$, by definition of a subgroup, any word formed by them is in H. Hence $W_S \subset H$. Therefore $W_S = \langle S \rangle$.

A group G is said to be finitely generated if there is a finite set S such that $\langle S \rangle = G$. Here is an important theorem (whose proof we shall omit).

Theorem 2. Every finitely generated Abelian group is uniquely of the form $\mathbb{Z}^r \times \mathbb{Z}_{q_1} \times \mathbb{Z}_{q_2} \times \mathbb{Z}_{q_3} \dots \mathbb{Z}_{q_n}$ where the integers q_i satisfy $q_i|q_{i+1} \forall i$. They are called the invariant factors of the group. The integer r is called the rank of the group.

Recalling the fact that the Dihedral group is a subgroup of S_n , it turns out that this observation (due to Cayley) holds for all groups :

Theorem 3. Let G be a group. Then it is isomorphic to a subgroup of S_G where S_G is the set of all bijections $f: G \to G$ made into a group by composition.

Proof. Given $g \in G$, consider $f_g : G \to G$ as $f_g(a) = g.a$. Clearly f_g is a bijection. Also, e goes to the identity map and $f_{g_1g_2} = (g_1g_2).a = g_1.(g_2.a) = f_{g_1}f_{g_2}$ and $g^{-1}.(g.a) = g.(g^{-1}.a) = a$ and hence $f_{g^{-1}} = (f_g)^{-1}$. So $g \to f_g$ is a group homomorphism that is 1 - 1. Therefore G is isomorphic to a subgroup of S_G .

In particular, every finite group of size n is isomorphic to a subgroup of S_n . So in principle it is enough to study subgroups of S_n for finite group theory. (However, concrete that this may be, it is usually useful to forget any particular "embedding" of a finite group into S_n and focus abstractly on the group itself.)

3 S_n in more detail

A 2-cycle is called a transposition. (For ex : (35) interchanges 3 and 5.) Here is an important result.

Theorem 4. The transpositions in S_n generate S_n .

Proof. It suffices to prove this for a cycle because every permutation is a disjoint union of cycles. Now $(a_1a_2...a_k) = (a_1a_k)(a_1a_{k-1})...(a_1a_2)$.

Of course this decomposition is not unique. For instance, (123) = (13)(12) = (21)(23).