
Notes for 21 March (Thursday)

1 The road so far...

1. Studied the Dihedral group Dn.

2. Defined and gave examples and non-examples of Dihedral groups.

2 Back to groups...

Note that as a consequence of every element of a finite group having a finite order,

Lemma 2.1. If G is a finite group, a non-empty subset H ⊂ G is a subgroup iff it is
closed under group multiplication ∗.

Also, here is another lemma about the existence of non-trivial subgroups.

Lemma 2.2. If G is a finite Abelian group then G has a non-trivial subgroup unless its
size n is 1 or a prime p.

Proof. If n is not a prime or 1, then n = rs for r, s > 1. For each a ∈ G consider 〈a〉. If
〈a〉 6= G for some a, we are done. If 〈a〉 = G then 〈ar〉 has size s and is hence a proper
subgroup.

We have the following theorem about cyclic groups.

Theorem 1. 1. Every subgroup of Z is cyclic.

2. Even better, every subgroup of a cyclic group is cyclic.

Proof. 1. If H ⊂ Z is a subgroup, then let n be the smallest positive integer in H (if
there is no such n then H = {0} = 〈0〉). The claim is that every a ∈ H is divisible
by n. If not, then a = kn + r where r < n. But a − kn ∈ H because H is a
subgroup. Therefore we have a contradiction.

2. Suppose G = 〈x〉 and K ⊂ G is a subgroup that is not trivial. Every element of K
is a power of x. Let H = {n ∈ Z|xn ∈ K}. Clearly H ⊂ Z is a subgroup and hence
cyclic. Suppose it is generated by a. Then 〈xa〉 = H.
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Here is a definition : The subgroup 〈S〉 ⊂ G generated by a set S is defined to be a
subgroup containing S such that any subgroup H ⊂ G that contains S also contains 〈S〉.
It is easy to see that such a subgroup is unique (indeed if there are two, each is contained
within the other). Now define a word in G formed by elements of S as an expression of
the form xi1

1 ∗ xi2
2 ∗ xi3

3 . . . ∗ xia
a where xu ∈ S, iu ∈ Z (not necessarily distinct). The set of

all words from S forms a subgroup WS of G containing S. In fact,

Lemma 2.3. WS = 〈S〉.

Proof. If S ⊂ H, then for any collection x1, . . . , xa ∈ S, by definition of a subgroup, any
word formed by them is in H. Hence WS ⊂ H. Therefore WS = 〈S〉.

A group G is said to be finitely generated if there is a finite set S such that 〈S〉 = G.
Here is an important theorem (whose proof we shall omit).

Theorem 2. Every finitely generated Abelian group is uniquely of the form Zr × Zq1 ×
Zq2 × Zq3 . . .Zqn where the integers qi satisfy qi|qi+1 ∀ i. They are called the invariant
factors of the group. The integer r is called the rank of the group.

Recalling the fact that the Dihedral group is a subgroup of Sn, it turns out that this
observation (due to Cayley) holds for all groups :

Theorem 3. Let G be a group. Then it is isomorphic to a subgroup of SG where SG is
the set of all bijections f : G→ G made into a group by composition.

Proof. Given g ∈ G, consider fg : G→ G as fg(a) = g.a. Clearly fg is a bijection. Also,
e goes to the identity map and fg1g2 = (g1g2).a = g1.(g2.a) = fg1fg2 and g−1.(g.a) =
g.(g−1.a) = a and hence fg−1 = (fg)

−1. So g → fg is a group homomorphism that is
1− 1. Therefore G is isomorphic to a subgroup of SG.

In particular, every finite group of size n is isomorphic to a subgroup of Sn. So in
principle it is enough to study subgroups of Sn for finite group theory. (However, concrete
that this may be, it is usually useful to forget any particular “embedding” of a finite group
into Sn and focus abstractly on the group itself.)

3 Sn in more detail

A 2-cycle is called a transposition. (For ex : (35) interchanges 3 and 5.) Here is an
important result.

Theorem 4. The transpositions in Sn generate Sn.

Proof. It suffices to prove this for a cycle because every permutation is a disjoint union
of cycles. Now (a1a2 . . . ak) = (a1ak)(a1ak−1) . . . (a1a2).

Of course this decomposition is not unique. For instance, (123) = (13)(12) = (21)(23).
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