Notes for 23rd Jan (Wednesday)

1 The road so far...

- 1. EGFs and a combinatorial lemma.
- 2. Defined graphs (actually multigraphs), subgraphs, and degree. Proved the hand-shaking lemma for simple graphs.

2 Graphs

A trail is a sequence of distinct edges such the endpoint of e_i is the starting point of e_{i+1} . If the edges are not distinct the trail is called a walk. If a trail starts and ends at the same vertex, it is called a closed trail. If a trail uses all edges then we call it an Eulerian trail. If a trail does not touch a vertex twice, it is called a path or sometimes, an arc. If any two vertices can be connected by a path then such a graph is called connected. Examples will be drawn on the board.

There are many ways to represent graphs, i.e., tell a computer about a graph. One way is an adjacency list, i.e., an array of lists like $a[1] = (1, 2), (1, 3), a[2] = (2, 4), \ldots$ Another is an adjacency matrix : $A_{ij} = number$ of edges if (i, j) is an edge and 0 otherwise (a loop is counted as 1 edge -*i* Caution : For degree, we count it as two). Note that since we are considering undirected graphs, $A_{ij} = A_{ji}$. An adjacency matrix is very useful to do some things - For instance,

Lemma 2.1. The number of walks (NOT paths or trails) of length n (that is number of edges traversed is n) between i and j is $(A^n)_{ij}$

Proof. Indeed, for n = 1 it is trivial. Assuming truth for 1, 2..., n, then an n + 1-length walk between i and j comes from n-length walks to the d_j neighbours of j. It equals $\sum_{k|A_{jk}=1} (A^n)_{ik} = \sum_k (A^n)_{ik} A_{kj} = (A^{n+1})_{ij}$.

Hence, the distance (the smallest length of a trail) between i and j is the smallest n such that $(A^n)_{ij} > 0$. In particular, A can be used to decide whether a graph is connected or not. (Calculate $A^{|E|}$ and check if all non-diagonal entries are positive or not.)

Lemma 2.2. Every graph is a finite disjoint union of connected subgraphs, i.e., there are no edges between the subgraphs and no vertices in common. These subgraphs are called connected components.

Proof. Declare an equivalence relation between vertices : $i \sim i$ and $i \sim j$ if i and j can be connected by a path. (Why is this an equivalence relation ?) This relation partitions the vertex set into finitely many subsets V_1, \ldots, V_k . Within each equivalence class, the vertices are connected. There are no edges between different equivalence classes. Hence V_i along with the edges between vertices is a connected subgraph G_i . $G = \bigcup_i G_i$. \Box