Notes for 26 Feb (Tuesday)

1 The road so far...

1. Proved Wilson's theorem.
2. Proved that $[-1]_{p}=\left[q^{2}\right]_{p}$ for some integer q if $p \equiv_{4} 1$.
3. Proved that $p=a^{2}+b^{2}$ iff $[p]_{4}=[1]_{4}$ using the Euclidean algorithm in the Gaussian integer ring $\mathbb{Z}[\sqrt{-1}]$.

2 Rings and fields

Now we return back to Fermat's and Euler's theorems and prove them using the Binomial theorem. To do this we need a lemma.

Lemma 2.1. If p is a prime, then p divides $\binom{p}{r}$ for all $0<r<p$.
Proof. Clearly r ! $(p-r)$! divides $p!$. However, p does not divide $r!,(p-r)$! and hence $g c d(r!(p-r)!, p)=1$. So $r!(p-r)!$ divides $(p-1)!$ thus implying the result.

The binomial theorem and the above lemma shows that

$$
\left[(x+y)^{p}\right]_{p}=\left[x^{p}+y^{p}\right]
$$

. Now, we prove Fermat's little theorem : $\left[a^{p}\right]_{p}=[a]_{p}$ for every integer a.
Proof. This is proven by induction on a. For $a=1$ it is trivial. Assume truth for $1,2, \ldots, a$. Then $\left[(a+1)^{p}\right]_{p}=\left[a^{p}+1\right]_{p}=[a+1]_{p}$. This shows truth for all positive integers a. For negative integers, every such integer is congruent to a positive one.

Now we can prove Euler's theorem too : $\left[a^{\phi(m)}\right]_{m}=[1]_{m}$ when $\operatorname{gcd}(m, a)=1$.
Proof. Let $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{g}^{e_{g}}$. So $\phi(m)=\Pi_{i} \phi\left(p_{i}^{e_{i}}\right)$. Hence, if we show the theorem for $m=p_{i}^{e_{i}}$ for all i, then $\left[a^{\phi(m)}\right]_{m}=[1]_{p_{i}{ }_{i}}$. So $a^{\phi(m)}-1$ is a common multiple of $p_{i}^{e_{i}} \forall i$ and is hence divisible by their lcm which is m.

Now we shall show the theorem for $m=p^{e}$ by inducting on e. For $e=1$ we have Fermat's little theorem. Assume truth for $1,2 \ldots, e$. Then $a^{p^{e-1}(p-1)} \equiv_{p^{e}} 1$. Thus, $a^{p^{e-1}(p-1)}=1+p^{e} n$. Then, $a^{p^{e}(p-1)}=\left(1+p^{e} n\right)^{p}=1+p^{e+1} n^{p}+p^{e} q$ for some integer q by the Binomial theorem and the divisibility result above.

Actually, we can prove another result using the above techniques.

Theorem 1. Let $m=p_{1} p_{2} \ldots p_{g}$ where the primes are distinct, i.e., m is squarefree. Let $\lambda(m)=l c m\left(p_{1}-1, p_{2}-1, \ldots, p_{g}-1\right)$. Then for every integer a and $k \in \mathbb{N}$, $a^{\lambda(m) k+1} \equiv{ }_{m} a$.

Proof. As before, it suffices to show the result for $m=p_{i}$ for each i. If $a \equiv_{p_{i}} 0$ it is obvious. If not, $[a]_{p_{i}}$ is a unit. Since $\lambda\left(p_{i}\right)=\left(p_{i}-1\right)$, by Fermat, $a^{\lambda(m) k+1} \equiv_{p_{i}} a$.

Since $\phi(m)$ is a multiple of $\lambda(m)$, the following corollary holds.
Theorem 2. If m is squarefree, then for every a and $k, a^{\phi(m) k+1} \equiv_{m} a$.
Note that this theorem is not true in general if m is not squarefree. Indeed, $[2]_{4}^{3}=[0]_{4}$.

3 Ring homomorphisms

The so-called Frobenius map $T([a])=[a]^{p}$ on \mathbb{Z}_{p} "respects" addition and multiplication, i.e., $T([a][b])=T([a]) T([b])$ and $T([a]+[b])=T([a])+T([b])$. Moreover, $T([1])=[1]$ and $T([0])=[0]$. Unfortunately, by Fermat's little theorem, this map T is simply the identity map! However, keep this map in mind because a version of this will not be as trivial later on. This sort of a map between rings (respecting the ring structure) is quite important :
A ring homomorphism $T: R \rightarrow S$ between rings R and S is a function satisfying

1. $T(1)=1$.
2. $T(a+b)=T(a)+T(b)$
3. $T(a b)=T(a) T(b)$.
