
Notes for 26 Feb (Tuesday)

1 The road so far...

1. Proved Wilson’s theorem.

2. Proved that [−1]p = [q2]p for some integer q if p ≡4 1.

3. Proved that p = a2 +b2 iff [p]4 = [1]4 using the Euclidean algorithm in the Gaussian
integer ring Z[

√
−1].

2 Rings and fields

Now we return back to Fermat’s and Euler’s theorems and prove them using the Binomial
theorem. To do this we need a lemma.

Lemma 2.1. If p is a prime, then p divides
(
p
r

)
for all 0 < r < p.

Proof. Clearly r!(p − r)! divides p!. However, p does not divide r!, (p − r)! and hence
gcd(r!(p− r)!, p) = 1. So r!(p− r)! divides (p− 1)! thus implying the result.

The binomial theorem and the above lemma shows that

[(x+ y)p]p = [xp + yp]

. Now, we prove Fermat’s little theorem : [ap]p = [a]p for every integer a.

Proof. This is proven by induction on a. For a = 1 it is trivial. Assume truth for
1, 2, . . . , a. Then [(a + 1)p]p = [ap + 1]p = [a + 1]p. This shows truth for all positive
integers a. For negative integers, every such integer is congruent to a positive one.

Now we can prove Euler’s theorem too : [aφ(m)]m = [1]m when gcd(m, a) = 1.

Proof. Let m = pe11 p
e2
2 . . . p

eg
g . So φ(m) = Πiφ(peii ). Hence, if we show the theorem for

m = peii for all i, then [aφ(m)]m = [1]peii . So aφ(m) − 1 is a common multiple of peii ∀ i and
is hence divisible by their lcm which is m.

Now we shall show the theorem for m = pe by inducting on e. For e = 1 we have
Fermat’s little theorem. Assume truth for 1, 2 . . . , e. Then ap

e−1(p−1) ≡pe 1. Thus,
ap

e−1(p−1) = 1 + pen. Then, ap
e(p−1) = (1 + pen)p = 1 + pe+1np + peq for some integer q by

the Binomial theorem and the divisibility result above.

Actually, we can prove another result using the above techniques.
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Theorem 1. Let m = p1p2 . . . pg where the primes are distinct, i.e., m is squarefree. Let
λ(m) = lcm(p1−1, p2−1, . . . , pg−1). Then for every integer a and k ∈ N, aλ(m)k+1 ≡m a.

Proof. As before, it suffices to show the result for m = pi for each i. If a ≡pi 0 it is
obvious. If not, [a]pi is a unit. Since λ(pi) = (pi − 1), by Fermat, aλ(m)k+1 ≡pi a.

Since φ(m) is a multiple of λ(m), the following corollary holds.

Theorem 2. If m is squarefree, then for every a and k, aφ(m)k+1 ≡m a.

Note that this theorem is not true in general if m is not squarefree. Indeed, [2]34 = [0]4.

3 Ring homomorphisms

The so-called Frobenius map T ([a]) = [a]p on Zp “respects” addition and multiplication,
i.e., T ([a][b]) = T ([a])T ([b]) and T ([a] + [b]) = T ([a]) + T ([b]). Moreover, T ([1]) = [1]
and T ([0]) = [0]. Unfortunately, by Fermat’s little theorem, this map T is simply the
identity map ! However, keep this map in mind because a version of this will not be as
trivial later on. This sort of a map between rings (respecting the ring structure) is quite
important :
A ring homomorphism T : R→ S between rings R and S is a function satisfying

1. T (1) = 1.

2. T (a+ b) = T (a) + T (b)

3. T (ab) = T (a)T (b).
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