
Notes for 26 March (Tuesday)

1 The road so far...

1. Proved that subgroups of cyclic groups are cyclic.

2. Stated the structure theorem for finitely generated Abelian groups.

3. Cayley’s theorem.

4. Proved that transpositions generate Sn.

2 Sn in more detail

Furthermore,

Theorem 1. 1. The transpositions (12), (13), (14), . . . (1n) generate Sn.

2. So do (12)(23) . . . (n− 1n).

Proof. 1. Indeed, (ij) = (1i)(1j)(1i).

2. Now (1k) = (k − 1k) . . . (34)(23)(12)(23)(34) . . . (k − 1k) (Basically, inductively as-
sume that (1k−1) can be expressed using (12), (23), . . . (k−2k−1). Now interchange
k − 1, k, apply the induction hypothesis and then interchange them again.

If σ is a permutation and α = (a1 . . . as) is a cycle, then β := σ ◦ α ◦ σ−1 is called the
conjugate of α by σ. Note that we used conjugates above. Here is an important theorem
about conjugates (proof as HW).

Theorem 2. Let α = (a1 . . . as) and β = (b1 . . . bs) be two cycles. Then

1. There exists a permutation σ such that σ(ai) = bi ∀ 1 ≤ i ≤ s.

2. If σ is any permutation such that σ(ai) = bi ∀ 1 ≤ i ≤ s, then β = σασ−1.

Now we prove an important generation result.

Theorem 3. (12) and (12 . . . n) generate Sn.

Proof. we need to show that (kk + 1) can be expressed in terms of these two. Suppose
this is true for 1, 2 . . . , k− 1. Then, (kk+ 1) = (12 . . . n)(k− 1k)(12 . . . n)−1 by the above
result on conjugates.
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While every element of Sn can be written in terms of transpositions in many ways,

Lemma 2.1. The parity of the number of transpositions required for writing a σ ∈ Sn is
uniquely determined by σ.

Proof. Let P (x1, . . . , xn) = Πi<j(xi−xj). If α ∈ Sn define αP = Πi<j(xα(i)−xα(j)). Note
that αP = ±P and the sign is determined purely by α. If α, β ∈ Sn then sgn(αβ) =
sgn(α)sgn(β). Therefore, sgn(σασ−1) = sgn(α). Since sgn(12) = −1, sgn(1a) = −1 and
hence sgn(ab) = −1. Thus the parity of the number of transpositions is well-defined.

The set of even permutations An ⊂ Sn is very important.

Theorem 4. An is a subgroup of size n!
2

(called the Alternating group).

Proof. Of course identity is an even permutation. If α, β ∈ An, since sgn is multiplicative,
αβ ∈ An. Likewise, sgn(α−1)sgn(α) = 1 and hence sgn(α−1) = sgn(α). Thus An is a
subgroup. The map α→ (12)α is a bijection from even permutations to odd permutations
(by multiplicativity of the sign). Hence |An| = n!

2
.

Here is the last generation result.

Theorem 5. For n ≥ 3, An is generated by 3-cycles.

Proof. Every 3-cycle is even. Every element of An can be written using an even number
of transpositions of the form (1a). Pairing them and noting that (1a)(1b) = (1ba) we are
done.

3 Back to abstract groups...again

We proved that for Abelian groups, the order of any element divides the order of the
group. For that we have to use the group multiplication table. Unfortunately, x1.a.x2.a 6=
x1.x2.a

2 for non-Abelian groups. Despite this problem, there is a wonderful theorem due
to Lagrange :

Theorem 6. If H ⊂ G is a subgroup of a finite group, then |H| divides |G|.

If H = 〈a〉 and G is Abelian, we get the generalisation of Fermat’s theorem to Abelian
groups. The strategy to prove Lagrange’s theorem is somewhat different from the one
for Fermat. It seems crucial to know what x1.a, x1.a

2, . . . look like (in the sense that if
x2.a = x1.a

2 for instance, then we can try to do some manipulations). More generally,
we define a relation : x ∼ y iff x.h1 = y.h2 for some h1, h2 ∈ H. This relation is an
equivalence relation. The equivalence classes are denoted as x.H and are called left cosets
of H. This relation generalises the notion of congruence. Now x.H and y.H have the same
number of elements for all x, y ∈ G. Indeed, here is a bijection : z ∈ x.H → y.x−1z ∈ y.H.
In particular, the cardinality of x.H is the same as e.H = H. Hence if G is finite,
|G| = |H||G/H|.
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