Notes for 27 March (Wednesday)

1 The road so far...

1. Proved some generation results for S_{n}.
2. Defined the sign of a permutation and A_{n}.
3. Proved that A_{n} is generated by 3 cycles (when $n \geq 3$).
4. Proved Lagrange's theorem.

2 Back to abstract groups...again

Unfortunately, the quotient set G / H does not always have an obvious group structure. Indeed, suppose we try to define $a . H$ " $*$ "b.H as $a * b . H$, the problem is that if $a_{1} * h_{1}=$ $a_{2} * h_{2}$, then $a_{1} * b * h$ need not be $a_{2} * b * \tilde{h}=a_{1} * h_{1} * h_{2}^{-1} * b * \tilde{h}$ for some \tilde{h}. Here are examples and counterexamples:

1. For $G=\mathbb{Z},+$ and $H=m \mathbb{Z}, G / H=\mathbb{Z}_{m}$ is a group.
2. More generally, if G is Abelian, then G / H is an Abelian group.
3. Consider $H=\{I d,(12)\}$ in $G=S_{3}$. Note that $(23) H(23)=\{I d,(13)\} \neq H$. So G / H is not a group.

To make G / H into a group, as discussed earlier, one needs to impose a condition on H : $H \subset G$ is said to be a normal subgroup if $g H=H g \forall g \in G$.

Theorem 1. If $H \subset G$ is a normal subgroup, then G / H is a group with the group operation defined as $a . H * b . H=(a * b) . H$.

Proof. This operation is well-defined (by the earlier calculations). Since e. $H * a . H=$ $a . H * e H=a . H$, there is an identity element. $(a . H * b . H) * c . H=(a * b) . H * c . H=$ $(a *(b * c)) \cdot H=a \cdot H *(b * c \cdot H)=a \cdot H *(b \cdot H * c . H)$. Also, $a^{-1} \cdot H * a \cdot H=a \cdot H * a^{-1} \cdot H=$ $e H=H$.

For example, let $G=U_{21}$ the group of units mod 21 of order 12. Let $H=\{[1],[-1],[8],[-8]\}$ be the subgroup consisting of square roots of 1 . Then $G / H=\{H,[2] H,[4] H\}$ and is a cyclic group.

The converse to Lagrange's theorem is not true: The group A_{4} of size 12 has no subgroup of size 6 .

Indeed, A_{4} consists of e, cyclic decomposition of two cycles (4 of them forming a subgroup $V \equiv K_{4}$), and the 8 three cycles. Suppose $H \subset A_{4}$ is of size 6 and $H^{\prime}=H \cap V$. By Lagrange's theorem, $\left|H^{\prime}\right|=1$ or 2. (To be continued...)

