
Notes for 28 Feb (Thursday)

1 The road so far...

1. Properties of ring homomorphisms.

2. Classified all the ring homomorphisms from Z to a commutative ring.

3. Defined the characteristic of a commutative ring.

Lemma 1.1. If f : Z→ R is a homomorphism and m is the characteristic, then ker(f) =
{0,m,−m, 2m,−2m, . . .}.

Proof. If n ∈ ker(f), i.e., f(n) = 0R, then n = mq + r where 0 ≤ r < m. Thus,
f(n) = f(m)f(q) + f(r) = 0R + r.1R = 0R which means that unless r = 0 we have a
contradiction.

Denote by mZ the set of multiplies of m.

Lemma 1.2. Let R be a commutative ring with no zero divisors and 0 6= 1. Then if the
characteristic is not 0, it is a prime.

Proof. If the characteristic is m, then m.1R = 0R. If m is not a prime, then m = pq for
some prime p. Then pq.1R = (p.1R)(q.1R) = 0R. Since there are no zero divisors, p.1R = 0
or q.1R = 0. We have a contradiction because m is the smallest such integer.

Every field therefore has either characteristic 0 or p where p is a prime. Every finite
field obviously has characteristic p. Here are examples of finite fields (it is easy to see
that the polynomial ring over Zp is an example of ring with positive characteristic).

1. Zp where p is a prime has characteristic p.

2. Let F4 = {0, 1, ω, b} defined by 0.x = x.0 = 0, 0 + x = x + 0 = x, 1.x = x.1 = x,
1 + 1 = 0, 1 + ω = ω + 1 = b, 1 + b = b + 1 = ω, ω + b = b + ω = 1, ω.b = b.ω = 1,
ω.ω = b, b.b = ω. Clearly, this defines a finite field. Its characteristic is clearly 2.

Def : A ring homomorphism is said to be an isomorphism if it is a bijection. Two rings
are said to be isomorphic if there is an isomorphism between them.
Firstly, the inverse of a ring isomorphism is a ring homomorphism. (HW) It is easy to
see that if the characteristic of a commutative ring is 0, then f : Z → R defined by
f(n) = n.1R is an isomorphism to its image.
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Theorem 1. Let R be a commutative ring and f : Z → R be a homomorphism. If f is
not injective, and mZ ⊂ ker(f) then f induces a homomorphism from Zm onto its image
defined by g([a]m) = f(a) = a.1R. If ker(f) = mZ, then the induced homomorphism is
an isomorphism onto its image.

As consequences,

1. Let R be a commutative ring with no zero divisors. If R has characteristic 0, it
has a subring isomorphic to Z. If it has characteristic p, then it has a subring
isomorphic to Zp.

2. If d divides m, then f : Z→ Zd induces a homomorphism from Z/mZ to Zd. Also,
a homomorphism between the groups of units.

Now we prove the above theorem.

Proof. We need to prove that g is well-defined. Indeed, if [a] = [a′], i.e. a = a′+ km then
f(a) = f(a′) + f(km) = f(a′) + 0 because km ∈ ker(f). This map is a homomorphism
because g([1]) = f(1) = 1, g([a]+[b]) = g([a+b]) = f(a+b) = f(a)+f(b) = g([a])+g([b]).
Likewise, for multiplication. The kernel of this homomorphism is [a] such that g([a]) = 0,
i.e., a ∈ ker(f). If ker(f) = mZ, then [a] = [0] and hence g is an isomorphism.

The following theorem defines the Frobenius endomorphism in general.

Theorem 2. If R is a commutative ring with prime characteristic p and a, b are elements
of R then (a+b)p = ap+bp, i.e., fp(a) = ap is a homomorphism (a homomorphism between
the same objects is called an endomorphism).

Proof. Note that the Binomial theorem (a+b)n =
n∑

r=0

(
n

r

)
arbn−r is true for commutative

rings by induction. Hence, (a+ b)p = ap + bp +
∑p−1

r=1

(
p
r

)
arbp−r = ap + bp because p divides(

p
r

)
when 1 ≤ r ≤ p− 1.

It is clear from the above that if F is a finite field of characteristic p (indeed, 1 − 1
implies onto because F is finite) then the Frobenius endomorphism is an isomorphism.
(An isomorphism between the same objects is called an Automorphism.) Moreover,

Lemma 1.3. If R is a ring of characteristic p, then ∀ a, b ∈ R and every n > 0,
(a + b)p

n
= ap

n
+ bp

n
.

Proof. The composition of any number of homomorphisms is a homomorphism (easy to
prove). Therefore, (a + b)p

n
= fpn(a) + fpn(b) = ap

n
+ bp

n
.
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