
Notes for 2 April (Tuesday)

1 The road so far...

1. Proved that the converse to Lagrange’s theorem is false.

2. Proved Cauchy’s theorem.

3. First isomorphism theorem and as a consequence, product of two non-quadratic
residues is a quadratic residue in Zp.

2 Quadratic reciprocity

An old theorem proven by Gauss helps us decide whether such an equation has a solution
or not (but does not help much in finding one). This law of quadratic reciprocity is a part
of a bigger conspiracy and when vastly generalised, it leads to the Langlands programme
of number theory (of which Fermat’s last theorem is a small corollary). The first step is
to reduce the problem to a prime power.

Theorem 1. Let m = pe11 p
e2
2 . . .. Then a is a quadratic residue modulo m iff it is so

modulo peii for each i.

Proof. If x2 = a + km, obviously, x2 = a + npeii . If x2i ≡peii a ∀ i, then by the Chinese

Remainder theorem (which applies because the pi are distinct), there is a unique b mod m
that solves b ≡peii xi. Thus, b2 ≡peii a ∀ i and hence b2 ≡m a.

From now onwards, we shall consider only the case where gcd(a,m) = 1 (because
the coprime numbers form a field under multiplication). The next step is to reduce the
problem to a prime. There are two cases - odd primes and 2. We first deal with odd
primes.

Theorem 2. Let p be an odd prime such that gcd(a, p) = 1. Then a is a quadratic residue
modulo pe (where e > 1) iff it is so modulo p.

Proof. If c2 ≡pe a then c2 ≡p a. Conversely, if c2 ≡p a.

Claim : The multiplicative group of units in Zpe is cyclic and generated by b (a
primitive root). Also, such a b is a primitive root modulo p.

Assuming the claim, a ≡pe br and hence a ≡p br. Let c ≡p bt. Since a ≡p c2, br ≡p b2t.
So r = 2t+ n(p− 1) = 2s. Hence, a ≡pe br = b2s = (bs)2. Hence we are done.
Now we prove the claim.
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Proof. Firstly, the exponent of a finite Abelian group G is the maximum of the orders of
all of its elements. For example, the exponent of U15, the group of units of Z15 is 4. The
main point is that

Theorem 3. Let λ be the exponent of a finite Abelian group G. Then the order of every
element b ∈ G divides λ.

Proof. Firstly, if a, b ∈ G, and ord(a) = r, ord(b) = s such that gcd(r, s) = 1, then ab has
order rs. Indeed, (ab)rs = 1 trivially. Also, if (ab)n = 1, then 1 = (ab)nr = bnr and hence
nr is divisible by s. Therefore n is divisible by s. Hence rs is the smallest such integer.
Now let b ∈ G and m = ord(b). λ = ord(a) for some a ∈ G and m ≤ λ. If m does not
divide λ, then there is a prime p such that a higher power of p divides m than it does
λ. This assumption will be used to find an element whose order is greater than λ thus
providing a contradiction. Indeed, suppose pr is the highest power of p dividing m and ps

that dividing λ where r > s. Since ord(b) = m, d = bm/p
r

has order pr. Since a has order
λ, c = ap

s
has order λ/ps. But pr, λ

ps
are coprime and hence cd has order λpr−s > λ.

Now we inch closer to the claim through the following primitive root theorem.

Theorem 4. The multiplicative group of Zp−{0} is cyclic, i.e., there is a primitive root
modulo p. In fact, every finite subgroup of the multiplicative group of a field is cyclic. As
a consequence, the multiplicative group of a finite field is cyclic.

Proof. We first prove the second statement (which implies the first). If U is a finite
subgroup of the group of units of a field F such that exp(U) = λ, |U | = n, then λ ≤ n
and aλ = 1 ∀ a ∈ U . By D’Alembert’s theorem, λ ≥ n and hence λ = n. Therefore there
is an element in U with order n.

We first prove the second part of the claim. that any primitive root b modulo pe for
some e > 1 is actually a primitive root for p. Indeed, if 0 < a < p then gcd(a, pe) = 1.
Therefore, a is a unit in Zpe . Thus a ≡pe bt which means that a ≡p bt and hence b is a
generator for Zp − {0}.
To be continued...

As mentioned earlier, this completes the proof (modulo the proof of the first part of
the claim).
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