Notes for 2 April (Tuesday)

1 The road so far...

- 1. Proved that the converse to Lagrange's theorem is false.
- 2. Proved Cauchy's theorem.
- 3. First isomorphism theorem and as a consequence, product of two non-quadratic residues is a quadratic residue in \mathbb{Z}_p .

2 Quadratic reciprocity

An old theorem proven by Gauss helps us decide whether such an equation has a solution or not (but does not help much in finding one). This law of quadratic reciprocity is a part of a bigger conspiracy and when vastly generalised, it leads to the Langlands programme of number theory (of which Fermat's last theorem is a small corollary). The first step is to reduce the problem to a prime power.

Theorem 1. Let $m = p_1^{e_1} p_2^{e_2} \dots$ Then a is a quadratic residue modulo m iff it is so modulo $p_i^{e_i}$ for each i.

Proof. If $x^2 = a + km$, obviously, $x^2 = a + np_i^{e_i}$. If $x_i^2 \equiv_{p_i^{e_i}} a \forall i$, then by the Chinese Remainder theorem (which applies because the p_i are distinct), there is a unique $b \mod m$ that solves $b \equiv_{p_i^{e_i}} x_i$. Thus, $b^2 \equiv_{p_i^{e_i}} a \forall i$ and hence $b^2 \equiv_m a$.

From now onwards, we shall consider only the case where gcd(a, m) = 1 (because the coprime numbers form a field under multiplication). The next step is to reduce the problem to a prime. There are two cases - odd primes and 2. We first deal with odd primes.

Theorem 2. Let p be an odd prime such that gcd(a, p) = 1. Then a is a quadratic residue modulo p^e (where e > 1) iff it is so modulo p.

Proof. If $c^2 \equiv_{p^e} a$ then $c^2 \equiv_p a$. Conversely, if $c^2 \equiv_p a$.

Claim : The multiplicative group of units in \mathbb{Z}_{p^e} is cyclic and generated by b (a primitive root). Also, such a b is a primitive root modulo p.

Assuming the claim, $a \equiv_{p^e} b^r$ and hence $a \equiv_p b^r$. Let $c \equiv_p b^t$. Since $a \equiv_p c^2$, $b^r \equiv_p b^{2t}$. So r = 2t + n(p-1) = 2s. Hence, $a \equiv_{p^e} b^r = b^{2s} = (b^s)^2$. Hence we are done. Now we prove the claim. *Proof.* Firstly, the exponent of a finite Abelian group G is the maximum of the orders of all of its elements. For example, the exponent of U_{15} , the group of units of \mathbb{Z}_{15} is 4. The main point is that

Theorem 3. Let λ be the exponent of a finite Abelian group G. Then the order of every element $b \in G$ divides λ .

Proof. Firstly, if $a, b \in G$, and ord(a) = r, ord(b) = s such that gcd(r, s) = 1, then ab has order rs. Indeed, $(ab)^{rs} = 1$ trivially. Also, if $(ab)^n = 1$, then $1 = (ab)^{nr} = b^{nr}$ and hence nr is divisible by s. Therefore n is divisible by s. Hence rs is the smallest such integer. Now let $b \in G$ and m = ord(b). $\lambda = ord(a)$ for some $a \in G$ and $m \leq \lambda$. If m does not divide λ , then there is a prime p such that a higher power of p divides m than it does λ . This assumption will be used to find an element whose order is greater than λ thus providing a contradiction. Indeed, suppose p^r is the highest power of p dividing m and p^s that dividing λ where r > s. Since ord(b) = m, $d = b^{m/p^r}$ has order p^r . Since a has order λ , $c = a^{p^s}$ has order λ/p^s . But p^r , $\frac{\lambda}{p^s}$ are coprime and hence cd has order $\lambda p^{r-s} > \lambda$. \Box

Now we inch closer to the claim through the following primitive root theorem.

Theorem 4. The multiplicative group of $\mathbb{Z}_p - \{0\}$ is cyclic, i.e., there is a primitive root modulo p. In fact, every finite subgroup of the multiplicative group of a field is cyclic. As a consequence, the multiplicative group of a finite field is cyclic.

Proof. We first prove the second statement (which implies the first). If U is a finite subgroup of the group of units of a field \mathbb{F} such that $\exp(U) = \lambda$, |U| = n, then $\lambda \leq n$ and $a^{\lambda} = 1 \forall a \in U$. By D'Alembert's theorem, $\lambda \geq n$ and hence $\lambda = n$. Therefore there is an element in U with order n.

We first prove the second part of the claim. that any primitive root b modulo p^e for some e > 1 is actually a primitive root for p. Indeed, if 0 < a < p then $gcd(a, p^e) = 1$. Therefore, a is a unit in \mathbb{Z}_{p^e} . Thus $a \equiv_{p^e} b^t$ which means that $a \equiv_p b^t$ and hence b is a generator for $\mathbb{Z}_p - \{0\}$. To be continued...

As mentioned earlier, this completes the proof (modulo the proof of the first part of the claim). $\hfill \Box$