Notes for 2 April (Tuesday)

1 The road so far...

1. Proved that the converse to Lagrange’s theorem is false.
2. Proved Cauchy’s theorem.

3. First isomorphism theorem and as a consequence, product of two non-quadratic
residues is a quadratic residue in Z,,.

2 Quadratic reciprocity

An old theorem proven by Gauss helps us decide whether such an equation has a solution
or not (but does not help much in finding one). This law of quadratic reciprocity is a part
of a bigger conspiracy and when vastly generalised, it leads to the Langlands programme
of number theory (of which Fermat’s last theorem is a small corollary). The first step is
to reduce the problem to a prime power.

Theorem 1. Let m = pi'p5*.... Then a is a quadratic residue modulo m iff it is so
modulo pi* for each i.

Proof. If 2* = a + km, obviously, * = a + npj’. If 27 =, a V i, then by the Chinese
Remainder theorem (which applies because the p; are distinct), there is a unique b mod m

that solves b = e x;. Thus, b* =« a Vi and hence b* =, a. O

From now onwards, we shall consider only the case where ged(a,m) = 1 (because
the coprime numbers form a field under multiplication). The next step is to reduce the
problem to a prime. There are two cases - odd primes and 2. We first deal with odd
primes.

Theorem 2. Let p be an odd prime such that gcd(a,p) = 1. Then a is a quadratic residue
modulo p¢ (where e > 1) iff it is so modulo p.

Proof. If ¢ =pc a then ¢* =, a. Conversely, if ¢ =, a.

Claim : The multiplicative group of units in Z, is cyclic and generated by b (a
primitive root). Also, such a b is a primitive root modulo p.

Assuming the claim, a =, 0" and hence a =, b". Let ¢ =, b'. Since a =, ¢?, b" =, b*".
Sor =2t +n(p—1) =2s. Hence, a =, b" = b* = (b°). Hence we are done.
Now we prove the claim.



Proof. Firstly, the exponent of a finite Abelian group G is the maximum of the orders of
all of its elements. For example, the exponent of U;s, the group of units of Z;5 is 4. The
main point is that

Theorem 3. Let A be the exponent of a finite Abelian group G. Then the order of every
element b € G divides \.

Proof. Firstly, if a,b € G, and ord(a) = r,ord(b) = s such that ged(r, s) = 1, then ab has
order rs. Indeed, (ab)™ =1 trivially. Also, if (ab)” =1, then 1 = (ab)™ = b™" and hence
nr is divisible by s. Therefore n is divisible by s. Hence rs is the smallest such integer.
Now let b € G and m = ord(b). X\ = ord(a) for some a € G and m < A. If m does not
divide A, then there is a prime p such that a higher power of p divides m than it does
A. This assumption will be used to find an element whose order is greater than A thus
providing a contradiction. Indeed, suppose p" is the highest power of p dividing m and p*
that dividing A\ where 7 > s. Since ord(b) = m, d = b™"" has order p". Since a has order
A, ¢ = a”” has order \/p*. But p", :z% are coprime and hence cd has order \p"=% > \. [

Now we inch closer to the claim through the following primitive root theorem.

Theorem 4. The multiplicative group of Z, — {0} is cyclic, i.e., there is a primitive root
modulo p. In fact, every finite subgroup of the multiplicative group of a field is cyclic. As
a consequence, the multiplicative group of a finite field is cyclic.

Proof. We first prove the second statement (which implies the first). If U is a finite
subgroup of the group of units of a field F such that exp(U) = A, |U| = n, then A < n
and a* =1V a € U. By D’Alembert’s theorem, A > n and hence A\ = n. Therefore there
is an element in U with order n. O

We first prove the second part of the claim. that any primitive root b modulo p® for
some e > 1 is actually a primitive root for p. Indeed, if 0 < a < p then ged(a,p®) = 1.
Therefore, @ is a unit in Zy. Thus a =, b* which means that a =, b* and hence b is a
generator for Z, — {0}.

To be continued... O

As mentioned earlier, this completes the proof (modulo the proof of the first part of
the claim). O
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