Notes for 2 April (Tuesday)

1 The road so far...

1. Proved that the converse to Lagrange's theorem is false.
2. Proved Cauchy's theorem.
3. First isomorphism theorem and as a consequence, product of two non-quadratic residues is a quadratic residue in \mathbb{Z}_{p}.

2 Quadratic reciprocity

An old theorem proven by Gauss helps us decide whether such an equation has a solution or not (but does not help much in finding one). This law of quadratic reciprocity is a part of a bigger conspiracy and when vastly generalised, it leads to the Langlands programme of number theory (of which Fermat's last theorem is a small corollary). The first step is to reduce the problem to a prime power.

Theorem 1. Let $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots$. Then a is a quadratic residue modulo m iff it is so modulo $p_{i}^{e_{i}}$ for each i.

Proof. If $x^{2}=a+k m$, obviously, $x^{2}=a+n p_{i}^{e_{i}}$. If $x_{i}^{2} \equiv_{p_{i}^{e_{i}}} a \forall i$, then by the Chinese Remainder theorem (which applies because the p_{i} are distinct), there is a unique $b \bmod m$ that solves $b \equiv_{p_{i}^{e}} x_{i}$. Thus, $b^{2} \equiv_{p_{i}^{e_{i}}} a \forall i$ and hence $b^{2} \equiv_{m} a$.

From now onwards, we shall consider only the case where $\operatorname{gcd}(a, m)=1$ (because the coprime numbers form a field under multiplication). The next step is to reduce the problem to a prime. There are two cases - odd primes and 2 . We first deal with odd primes.

Theorem 2. Let p be an odd prime such that $\operatorname{gcd}(a, p)=1$. Then a is a quadratic residue modulo p^{e} (where $e>1$) iff it is so modulo p.

Proof. If $c^{2} \equiv_{p^{e}} a$ then $c^{2} \equiv_{p} a$. Conversely, if $c^{2} \equiv_{p} a$.
Claim : The multiplicative group of units in $\mathbb{Z}_{p^{e}}$ is cyclic and generated by b (a primitive root). Also, such a b is a primitive root modulo p.

Assuming the claim, $a \equiv_{p^{e}} b^{r}$ and hence $a \equiv_{p} b^{r}$. Let $c \equiv_{p} b^{t}$. Since $a \equiv_{p} c^{2}, b^{r} \equiv_{p} b^{2 t}$. So $r=2 t+n(p-1)=2 s$. Hence, $a \equiv_{p^{e}} b^{r}=b^{2 s}=\left(b^{s}\right)^{2}$. Hence we are done.
Now we prove the claim.

Proof. Firstly, the exponent of a finite Abelian group G is the maximum of the orders of all of its elements. For example, the exponent of U_{15}, the group of units of \mathbb{Z}_{15} is 4 . The main point is that

Theorem 3. Let λ be the exponent of a finite Abelian group G. Then the order of every element $b \in G$ divides λ.

Proof. Firstly, if $a, b \in G$, and $\operatorname{ord}(a)=r, \operatorname{ord}(b)=s$ such that $\operatorname{gcd}(r, s)=1$, then $a b$ has order $r s$. Indeed, $(a b)^{r s}=1$ trivially. Also, if $(a b)^{n}=1$, then $1=(a b)^{n r}=b^{n r}$ and hence $n r$ is divisible by s. Therefore n is divisible by s. Hence $r s$ is the smallest such integer. Now let $b \in G$ and $m=\operatorname{ord}(b)$. $\lambda=\operatorname{ord}(a)$ for some $a \in G$ and $m \leq \lambda$. If m does not divide λ, then there is a prime p such that a higher power of p divides m than it does λ. This assumption will be used to find an element whose order is greater than λ thus providing a contradiction. Indeed, suppose p^{r} is the highest power of p dividing m and p^{s} that dividing λ where $r>s$. Since $\operatorname{or} d(b)=m, d=b^{m / p^{r}}$ has order p^{r}. Since a has order $\lambda, c=a^{p^{s}}$ has order λ / p^{s}. But $p^{r}, \frac{\lambda}{p^{s}}$ are coprime and hence $c d$ has order $\lambda p^{r-s}>\lambda$.

Now we inch closer to the claim through the following primitive root theorem.
Theorem 4. The multiplicative group of $\mathbb{Z}_{p}-\{0\}$ is cyclic, i.e., there is a primitive root modulo p. In fact, every finite subgroup of the multiplicative group of a field is cyclic. As a consequence, the multiplicative group of a finite field is cyclic.

Proof. We first prove the second statement (which implies the first). If U is a finite subgroup of the group of units of a field \mathbb{F} such that $\exp (U)=\lambda,|U|=n$, then $\lambda \leq n$ and $a^{\lambda}=1 \forall a \in U$. By D'Alembert's theorem, $\lambda \geq n$ and hence $\lambda=n$. Therefore there is an element in U with order n.

We first prove the second part of the claim. that any primitive root b modulo p^{e} for some $e>1$ is actually a primitive root for p. Indeed, if $0<a<p$ then $\operatorname{gcd}\left(a, p^{e}\right)=1$. Therefore, a is a unit in $\mathbb{Z}_{p^{e}}$. Thus $a \equiv_{p^{e}} b^{t}$ which means that $a \equiv_{p} b^{t}$ and hence b is a generator for $\mathbb{Z}_{p}-\{0\}$.
To be continued...
As mentioned earlier, this completes the proof (modulo the proof of the first part of the claim).

