
Notes for 2nd Jan (Wednesday)

1 The road so far...

1. Discussed logistics, textbooks, etc. Some ramblings about the foundations of math-
ematics.

2. Discussed the Zermelo-Frankel Axioms of Set theory. Out of these the important
points you have to take home are that sets can be constructed only from pre-
existing ones (like the empty set) and the concepts of Cartesian product of two
sets, relations, and functions. We assume that everyone knows what injective,
surjective, and bijective mean.

2 Naive set theory done right - ZFC

Axiom of choice : Let F be a set (of sets as always) containing an arbitrary number of
elements each of which is a non-empty set. Let U = ∪iXi be the union of all elements
Xi of F . Then there exists a “choice” function f : F → U such that f(i) is an element
of Xi.

We shall not bother constructing the set of natural numbers N ⊂ S. We shall assume
that one can freely add, subtract, multiply, and exponentiate natural numbers.

3 Equivalence relations and partitions

In this course, a relation R between sets A and B is a subset of P (A×B). A special and
useful kind of a relation (generalising the property of equality) is that of an equivalence
relation -

An equivalence relation R between A and itself (unfortunately, sometimes a relation
between A and itself is said to be “a relation on A”) such that

1. Every element of A is related to itself, i.e., (a, a) ∈ R ∀ a ∈ A. (This is called the
property of reflexivity.)

2. If a is related to b then b is related to a, i.e., if (a, b) ∈ R, then (b, a) ∈ R.
(Symmetry.)

3. If a is related to b, and b to c, then a is related to c, i.e., if (a, b) ∈ R, (b, c) ∈ R,
then (a, c) ∈ R. (Transitivity.)

Here are examples and counterexamples :
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1. Similarity is an equivalence relation on the set of all triangles. (Why is the set of
all triangles a well-defined concept by the way ?)

2. The parity of numbers being the same is an equivalence relation.

3. Suppose S = {1, 2, 3, 4}. Then the relation “1 is related to all the numbers and
they are all related to 1” is not an equivalence relation. Indeed, the relation is
(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1). So it is not reflexive and transitive but
it is symmetric. Even if we include (2, 2), (3, 3), (4, 4) it will fail to be transitive.
(Indeed, 2 is related to 1, 1 is related to 3 but (2, 3) /∈ R.)

4. Suppose S = {1, 2, 3, 4}. The relation “Every number is only related to itself” is
an equivalence relation (it is simply the equality relation).

5. Suppose S = {1, 2, 3, 4}. Then “1 and 2 are related to each other and themselves.
Likewise for 3 and 4” is an equivalence relation.

6. In S above, “1 and 2 are related to each other and themselves. 3 is related only to
itself. But 4 is related to itself and 2” is not an equivalence relation.

Note that in the above examples, an equivalence relation behaves like an equality in the
sense that one group all the elements that are equivalent into bunches. To make this
precise, we define the notion of a set partition -

A set partition of a set S is a collection of subsets Ai ∈ P (S) such that UiAi = S and
all the Ai are pairwise disjoint.
Here is a very useful theorem that tells us how equivalence relations are constructed.
Going further, we shall denote “a is related to b” by a ∼ b.

Theorem 1. An equivalence relation between S and itself partitions S (the partitions are
called equivalence classes). Conversely, every partition of S arises from an equivalence
relation.

Proof. Define the equivalence class [a] of an element a ∈ S as the subset {x ∈ S|x ∼ a}.
Clearly every element is in some equivalence class. Suppose x ∈ [a] and x ∈ [b], then
x ∼ a, x ∼ b. Hence, a ∼ b. This means that [a] = [b] if [a] ∩ [b] 6= φ. Therefore the set
of equivalence classes partitions S.
Conversely, given a partition Si of S, define the relation x ∼ y if they both belong to
the same Si, i.e., (x, y) ∈ R if x, y ∈ Si for some i. This can be easily checked to be an
equivalence relation and indeed the equivalence classes are the Si.

Note that the above theorem tells us how many equivalence relations there can be on
any set. For instance, on the set {1, 2, 3}, there are 5 equivalence relations.

Here is a nice application of these things :

Lemma 3.1. Define an involution i : S → S to be any function such that i2(x) = x ∀ x ∈
S. If S is a finite set with an odd number of elements, then i has an odd number of fixed
points. Conversely, if i has an odd number of fixed points, then S is odd.
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Proof. Define a relation x ∼ y if x = i(y) or if x = y. Then this relation is reflexive,
symmetric i(x) = i2(y) = y, and transitive i(x) = y, i(y) = z ⇒ i(z) = i2(x) = x.
Unless one has a fixed point, every equivalence class has exactly 2 elements. Therefore
2k + numberoffixedpoints = |S|. This observation completes the proof.

Here is a spectacular (but completely uninformative) proof due to Don Zagier (based
on ideas of Heath-Brown) that every prime number p of the form 4k + 1 is the sum of
two squares.

Proof. Let S = {(x, y, z) ∈ N3 : x2 + 4yz = p}. If |S| is odd, then the involution
(x, y, z)→ (x, z, y) has a fixed points (and hence we are done). To prove that |S| is odd,
it is enough to show that the following map is an involution.

(x, y, z)→ (x+ 2z, z, y − x− z) if x < y − z,
(x, y, z)→ (2y − x, y, x− y + z) if y − z < x < 2y,

(x, y, z)→ (x− 2y, x− y + z, y) if 2y < x.

This will be given as a HW.

Before we end our discussion of equivalence relations, there is a very useful definition
that occurs in many walks of algebra and topology : That of a quotient. The set of
equivalence classes of an equivalence relation is called a quotient set. Here are examples.

1. The quotient set of the equivalence relation on N given by x ∼ y if x and y have
the same parity is {[0], [1]}.

2. For the equivalence relation on 0 ≤ x ≤ 1 given by x ∼ x ∀ x and 0 ∼ 1, the
quotient is bijective to x2 + y2 = 1 in R2.
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