
Notes for 31st Jan (Thursday)

1 The road so far...

1. Proved that Hamiltonian cycles exist if the degree of every vertex is large (≥ n
2
).

2. “Proved” Euler’s formula for planar graphs.

2 Number theory - The basics

First we have the division theorem :

Theorem 1. Given two non-negative integers a > 0 and b, there exist two unique integers
q ≥ 0, 0 ≤ r < a such that b = aq + r.

Proof. 1. Existence : Let S = {b − ax| x ∈ N b − ax ≥ 0}. This set is nonempty
(0 ∈ S). By well-ordering it has a least element r. Let the corresponding x be
denoted as q ≥ 0. If r > a, then b − a(q + 1) ≥ 0 contradicting the assumption of
minimality on r. Hence 0 ≤ r < a.

2. Uniqueness : If aq1 + r1 = aq2 + r2 then a(q1 − q2) = r1 − r2 where r1 ≥ r2. Since
0 ≥ r1 − r2 < a we have a contradiction unless r1 = r2 and q1 = q2.

This theorem is the basis for number systems, i.e., decimal, binary, hexadecimal,
etc.

Now we prove the fundamental theorem of arithmetic (also called the unique factori-
sation property) :

Theorem 2. Every natural number > 1 can be written uniquely as 2a13a2 . . . where ai ≥ 0,
i.e., uniquely factored into a finite product of primes (upto permutation).

Proof. 1. Existence : For n = 2 it is trivial. If true for 2, 3 . . . , n− 1, then either n is
a prime or n = n1n2 for two natural numbers < n. Using the induction hypothesis
we are done.

2. Uniqueness : For n = 2 it is trivial. If true for 2, 3 . . . , n − 1, then either n is a
prime (in which case it cannot be factored further by definition) or n = p1p2 . . . pk.
Suppose there is another factorisation n = q1q2 . . . qm. If there exists a j so that
qj = p1, then indeed p2 . . . pk = q1 . . . qj−1qj+1 . . . qm. By the induction hypothesis,
we are done. Indeed, the desired result follows from the following lemma and
induction.
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Lemma 2.1. If p is a prime and p divides ab, then p divides either a or b.

Proof. (CORRECTED PROOF) Unfortunately, I shall use Bezout’s identity (proven
a little later). If pk = ab then if p does not divide a, gcd(a, p) = 1 because p is a
prime. By Bezout’s identity, pn+am = 1 and hence pnb+abm = b⇒ p(nb+km) = b
meaning that b is divisible by p.

It is computationally very hard to factor numbers. Many encryption algorithms like
RSA rely on this fact. (Although quantum computers can factor numbers quickly - See
Shor’s algorithm.) It is an easy exercise to show that

Lemma 2.2. a divides b iff the exponents of the prime factors of a are smaller than those
of b.

Here is an application of the above.

Theorem 3. |N2| ≤ |N|, i.e., there is an injective map from N2 to N.

Proof. The map is (n1, n2) → 2n13n2 . By the fundamental theorem of arithmetic this is
a 1− 1 map. (This is called Gödel numbering.)

Let a, b ∈ N, a 6= 0. A common divisor of a, b is a natural number c that divides both,
a, and b. A common divisor d of a, b is called the greatest common divisor (gcd) of a and
b if no other common divisor is larger than d. There exists a gcd of any two numbers by
well-ordering. (Indeed, take the set S = {a

c
|a
c
, b
c
∈ N}. It is non-empty (a ∈ S) and hence

has a least element d. The gcd is a
d
.). Two numbers are said to be coprime if their gcd

is 1.

Lemma 2.3. If a = 2a13a2 . . . and b = 2b13b2 . . ., then c = gcd(a, b) = 2min(a1,b1)3min(a2,b2) . . ..

Proof. c clearly divides a, b. If d divides a, b then by a lemma above, its exponents have
to be ≤ ai, bi. Therefore c is the greatest such integer.

The above process is clearly computationally inefficient. Here is a very old (dating to
Euclid) but efficient algorithm -
Let c = min(a, b) and d = max(a, b). If c = 0 return d. If c 6= 0 return gcd(c, r) where
d = cq + r. Here is the proof that this algorithm works : Induct on c. The base case is
trivial. If the algorithm works for all integers < c, then d = cq+ r. Therefore, the gcd of
(c, r) divides c and d and is hence less than gcd(c, d). If u divides c, r, then it divides d
as well and hence is less than gcd(c, r). So gcd(c, d) ≤ gcd(c, r). Therefore we are done.

More clearly, b = aq1 + r1, a = q2r1 + r2, r1 = q3r2 + r3. . . rn−1 = qn+1rn. The gcd is
rn. Here is a useful identity.

Theorem 4. (Bezout’s identity) If d = gcd(a, b), then d = ax+ by where a, b ∈ Z.

Proof. Induct on the number of steps in Euclid’s algorithm. If n = 1, then b = aq
and hence d = a = a.1 + b.0. If true for 1, 2, . . . , n, then as above since gcd(a, b) =
gcd(a, r1), and gcd(a, r1) can be computed in n steps, we see that d = aα + r1β. Hence
d = aα + (b− aq1)β = ax+ by.

This solution of d = ax+ by for x, y is called the extended Euclidean algorithm.
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