Notes for 31st Jan (Thursday)

1 The road so far...

1. Proved that Hamiltonian cycles exist if the degree of every vertex is large $\left(\geq \frac{n}{2}\right)$.
2. "Proved" Euler's formula for planar graphs.

2 Number theory - The basics

First we have the division theorem :
Theorem 1. Given two non-negative integers $a>0$ and b, there exist two unique integers $q \geq 0,0 \leq r<a$ such that $b=a q+r$.

Proof. 1. Existence : Let $S=\{b-a x \mid x \in \mathbb{N} b-a x \geq 0\}$. This set is nonempty $(0 \in S)$. By well-ordering it has a least element r. Let the corresponding x be denoted as $q \geq 0$. If $r>a$, then $b-a(q+1) \geq 0$ contradicting the assumption of minimality on r. Hence $0 \leq r<a$.
2. Uniqueness : If $a q_{1}+r_{1}=a q_{2}+r_{2}$ then $a\left(q_{1}-q_{2}\right)=r_{1}-r_{2}$ where $r_{1} \geq r_{2}$. Since $0 \geq r_{1}-r_{2}<a$ we have a contradiction unless $r_{1}=r_{2}$ and $q_{1}=q_{2}$.
This theorem is the basis for number systems, i.e., decimal, binary, hexadecimal, etc.

Now we prove the fundamental theorem of arithmetic (also called the unique factorisation property) :

Theorem 2. Every natural number >1 can be written uniquely as $2^{a_{1}} 3^{a_{2}} \ldots$ where $a_{i} \geq 0$, i.e., uniquely factored into a finite product of primes (upto permutation).

Proof. 1. Existence: For $n=2$ it is trivial. If true for $2,3 \ldots, n-1$, then either n is a prime or $n=n_{1} n_{2}$ for two natural numbers $<n$. Using the induction hypothesis we are done.
2. Uniqueness : For $n=2$ it is trivial. If true for $2,3 \ldots, n-1$, then either n is a prime (in which case it cannot be factored further by definition) or $n=p_{1} p_{2} \ldots p_{k}$. Suppose there is another factorisation $n=q_{1} q_{2} \ldots q_{m}$. If there exists a j so that $q_{j}=p_{1}$, then indeed $p_{2} \ldots p_{k}=q_{1} \ldots q_{j-1} q_{j+1} \ldots q_{m}$. By the induction hypothesis, we are done. Indeed, the desired result follows from the following lemma and induction.

Lemma 2.1. If p is a prime and p divides $a b$, then p divides either a or b.
Proof. (CORRECTED PROOF) Unfortunately, I shall use Bezout's identity (proven a little later). If $p k=a b$ then if p does not divide $a, \operatorname{gcd}(a, p)=1$ because p is a prime. By Bezout's identity, $p n+a m=1$ and hence $p n b+a b m=b \Rightarrow p(n b+k m)=b$ meaning that b is divisible by p.

It is computationally very hard to factor numbers. Many encryption algorithms like RSA rely on this fact. (Although quantum computers can factor numbers quickly - See Shor's algorithm.) It is an easy exercise to show that

Lemma 2.2. a divides b iff the exponents of the prime factors of a are smaller than those of b.

Here is an application of the above.
Theorem 3. $\left|\mathbb{N}^{2}\right| \leq|\mathbb{N}|$, i.e., there is an injective map from \mathbb{N}^{2} to \mathbb{N}.
Proof. The map is $\left(n_{1}, n_{2}\right) \rightarrow 2^{n_{1}} 3^{n_{2}}$. By the fundamental theorem of arithmetic this is a 1-1 map. (This is called Gödel numbering.)

Let $a, b \in \mathbb{N}, a \neq 0$. A common divisor of a, b is a natural number c that divides both, a, and b. A common divisor d of a, b is called the greatest common divisor (gcd) of a and b if no other common divisor is larger than d. There exists a gcd of any two numbers by well-ordering. (Indeed, take the set $S=\left\{\left.\frac{a}{c} \right\rvert\, \frac{a}{c}, \frac{b}{c} \in \mathbb{N}\right\}$. It is non-empty $(a \in S)$ and hence has a least element d. The gcd is $\frac{a}{d}$.). Two numbers are said to be coprime if their gcd is 1 .

Lemma 2.3. If $a=2^{a_{1}} 3^{a_{2}} \ldots$ and $b=2^{b_{1}} 3^{b_{2}} \ldots$, then $c=\operatorname{gcd}(a, b)=2^{\min \left(a_{1}, b_{1}\right)} 3^{\min \left(a_{2}, b_{2}\right)} \ldots$.
Proof. c clearly divides a, b. If d divides a, b then by a lemma above, its exponents have to be $\leq a_{i}, b_{i}$. Therefore c is the greatest such integer.

The above process is clearly computationally inefficient. Here is a very old (dating to Euclid) but efficient algorithm -
Let $c=\min (a, b)$ and $d=\max (a, b)$. If $c=0$ return d. If $c \neq 0$ return $\operatorname{gcd}(c, r)$ where $d=c q+r$. Here is the proof that this algorithm works : Induct on c. The base case is trivial. If the algorithm works for all integers $<c$, then $d=c q+r$. Therefore, the gcd of (c, r) divides c and d and is hence less than $\operatorname{gcd}(c, d)$. If u divides c, r, then it divides d as well and hence is less than $\operatorname{gcd}(c, r)$. So $\operatorname{gcd}(c, d) \leq g c d(c, r)$. Therefore we are done.

More clearly, $b=a q_{1}+r_{1}, a=q_{2} r_{1}+r_{2}, r_{1}=q_{3} r_{2}+r_{3} \ldots r_{n-1}=q_{n+1} r_{n}$. The gcd is r_{n}. Here is a useful identity.
Theorem 4. (Bezout's identity) If $d=\operatorname{gcd}(a, b)$, then $d=a x+$ by where $a, b \in \mathbb{Z}$.
Proof. Induct on the number of steps in Euclid's algorithm. If $n=1$, then $b=a q$ and hence $d=a=a .1+b .0$. If true for $1,2, \ldots, n$, then as above since $\operatorname{gcd}(a, b)=$ $\operatorname{gcd}\left(a, r_{1}\right)$, and $\operatorname{gcd}\left(a, r_{1}\right)$ can be computed in n steps, we see that $d=a \alpha+r_{1} \beta$. Hence $d=a \alpha+\left(b-a q_{1}\right) \beta=a x+b y$.

This solution of $d=a x+b y$ for x, y is called the extended Euclidean algorithm.

