
Notes for 5 Feb (Tuesday)

1 The road so far...

1. Proved the division theorem and the fundamental theorem of arithmetic.

2. Defined gcd (by the way, the definition of gcd makes sense even for negative inte-
gers). Proved Euclid’s algorithm and Bezout’s identity.

2 Number theory - The basics

As a corollary, if a, b are coprime, then ax+ by = 1 for some integers a, b.
Here are consequences of Bezout’s identity (can also be proven easily using the funda-
mental theorem of arithmetic).

1. If e divides a, b then e divides gcd(a, b). Indeed, a = eu, b = ev. Thus, d =
eux+ evy = e(ux+ vy).

2. If a divides bc and a, b are coprime, then a divides c. (This gives another proof of
the fundamental theorem of arithmetic.) Indeed, ax + by = 1 and bc = ak. Thus,
c = bcy + acx = a(ky + cx).

3. For every a, b,m, gcd(ab,m) divides gcd(a,m)gcd(b,m). If a and b are coprime, then
gcd(a,m)gcd(b,m) = gcd(ab,m). (Once again this is clear from the fundamental
theorem.) Indeed, d1 = ax1 +my1, d2 = bx2 +my2. Thus, d1d2 = abz1 +mz2.
Suppose a, b are coprime. Then so are gcd(a,m) and gcd(b,m). Note that gcd(ab,m)
is divisible by gcd(a,m). Write gcd(ab,m) = gcd(a,m)e. Now gcd(b,m) also di-
vides gcd(ab,m). Therefore, gcd(b,m) divides e. This means that gcd(ab,m) =
gcd(a,m)gcd(b,m)f . By the previous part, f = 1.

The point of Bezout’s identity is to solve linear Diophantine equations (polynomial equa-
tions with integer coefficients solved for integers). By the way, one of Hilbert’s famous
problems was to decide when a given Diophantine equation has a solution. This problem
is “undecidable”, i.e., there is no algorithm that does the job.

Theorem 1. Given integers a, b, e, there are integers m and n with am + bn = e iff
gcd(a, b) divides e.

Proof. Assume that a, b, e are non-negative integers. (The other cases will be dealt with
in your HW.) If gcd(a, b) divides e, then e = kgcd(a, b) = k(ax+by) by Bezout and hence
we are done.
Conversely, if am+bn = e, then any divisor of a, b divides e. Hence, so does their gcd.
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Once we find one solution to am + bn = e, all the other solutions are of the form
m+ x, n+ y where ax+ by = 0. Now we have the following easy lemma.

Lemma 2.1. Let d = gcd(a, b). Then the general solution of ax + by = 0 is x = bk
d

and
y = −ak

d
for any integer k.

Proof. Note that a
d
x = − b

d
y. Since a

d
, b
d

are coprime, y is divisible by a
d
. Hence, y = ak

d

and likewise for x.

Given two integers a, b we say that c is a common multiple if c = ar and c = bs for
two integers r, s. The set of common multiples is non-empty (because ab is in it) and
hence has a least element that we call lcm(a, b). Here is an important lemma.

Lemma 2.2. Assume that a, b are natural numbers with one of them > 0.

1. lcm(a, b) = ab
gcd(a,b)

.

2. lcm(a, b) divides every common multiple of a and b.

Proof. In the unique prime factorisation of a, b let ai, bi be the exponent of the ith prime
pi. Then l = Πip

max(ai,bi) is a common multiple. If c = ar, c = bs is any common multiple,
then by the same easy proposition that a divides b iff ai ≤ bi ∀ i, we see that ci ≥ ai, bi
and hence ci ≥ max(ai, bi). Therefore l = lcm(a, b) and the second part of the lemma is
proved.
Since we know that gcd(a, b) = Πip

min(ai,bi)
i , and max(ai, bi) +min(ai, bi) = ai + bi ∀ i we

are done with the first part.

Obviously it is far more effiicient to calculate the lcm using the above formula than
the prime factorisation.

Here is an important theorem (seemingly obvious) about primes.

Theorem 2. (Euclid) There are infinitely many primes.

Proof. Suppose there are only n primes p1, . . . , pn. Consider p1p2 . . . pn + 1. This number
is not divisible by any of the pi. This observation is a contradiction to the fundamental
theorem of arithmetic.

We shall not prove the following theorem but it is obviously quite important.

Theorem 3. (The Prime Number Theorem) Let π(x) be the number of primes ≤ x. Then

limx→∞
π(x)

x/ ln(x)
= 1.

It follows as a corollary that for large n, there is a prime number between n and 2n.
This is called Bertrand’s postulate. More interestingly, one wants to know what the error
in π(x) ∼ x

ln(x)
is. It turns out that getting a precise form for the error is equivalent to

the Riemann hypothesis !
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