
Notes for 5 March (Tuesday)

1 The road so far...

1. Proved that the characteristic of fields is 0 or prime.

2. Defined the Frobenius endomorphism for general rings of positive characteristic.

2 A detour into cryptography

It turns out (HW) that any finite field F has size pn. Since F− {0} is an Abelian group
of size pn − 1, ap

n
= a for all a ∈ F. Using this observation, one can not only construct

an example of a finite field of size pn for all p, n but also prove that any other finite field
is isomorphic to one of such constructed examples.

Now we discuss a tiny bit of cryptography (a field that I do not understand). A
message is taken to be a string of decimal digits. We want to transmit it securely. Until the
1970s, people used “symmetric encryption algorithms”, meaning that the encryption and
decryption were done by the same “key” (typically a large, usually, randomly generated
prime number). This key was transmitted in a secure way between the sender and the
recepient. Obviously this is a problematic idea if the number of recepients is large. The
“secure channel” aspect of it was taken care of by the Diffey-Hellman key exchange
protocol which is vaguely similar to this problem : Basically, if Bob wants to send an
engagement ring to Alice, then he can lock it in a box, and send it. Alice can put her
own lock on the box and send it back to Bob. Then Bob can open his lock and send it
to Alice. Alice can then open her lock. This is implemented as follows

1. Alice and Bob choose large secret numbers a, b.

2. Alice and Bob agree on two prime numbers g, n which can be kept secret, but it is
not necessary (but they must be changed every time).

3. Bob calculates gb mod n and sends it to Alice. Alice sends ga mod n and sends it
to Bob.

4. Then Bob and Alice calculate (ga)b mod = gab mod = (gb)a mod n. This resulting
thing is their shared key. What is being used here is that modular exponentiation
can be done quickly but discrete logarithms are hard to find.

But even with this DH way of securely transmitting keys, symmetric cryptography is still
inconvenient (what if the keys are changed regularly ?) So “public key” crytography was
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developed. Here, everyone can send me encrypted messages (using a public key). But
only I can decrypt them using a private key. This asymmetric method is more popular
these days. The RSA (Rivest-Shamir-Adleman) public key encryption algorithm works
on this basis.

1. Alice chooses large primes p, q and calculates n = pq, φ(n) = (p− 1)(q − 1).

2. She chooses an integer e < t and coprime with it.

3. She finds the multiplicative inverse d of e in Zt (using Bezout’s identity).

4. She releases (e, n) as the public key and retains (d, n) as her private key.

5. If you want to send a message m < n, then the encrypted message (the “cypher
text”) is [c]n = [m]en where c < n. It is decrypted as [m]n = [c]dn. Indeed, [c]dn =

[m]edn = [m]
φ(m)k+1
n = [m]n because n is squarefree. This algorithm will be broken if

we can find the prime factorisation of an integer efficiently. (Quantum computers
can do this.)

3 The Chinese Remainder theorem

Given m,n, a, b, suppose we want to solve a system of congruences, i.e., find an x so
that x ≡m a and x ≡n b. This problem was solved by Sunzi in the third century.
For instance, find an x so that x ≡3 2 and x ≡5 3. To solve this, x = 3k1 + 2 and
x = 5k2+3. So 3k1−5k2 = 1. This can be solved because it is a Diophantine equation and
gcd(3, 5) = 1. Indeed, k1 = 2, k2 = 1 is a solution. The general solution is k1 = 2 + 5n,
k2 = 1 + 3n. Hence, x = 8 + 15n. Likewise, consider x ≡74 11 and x ≡63 13. So
x = 11 + 74k1 = 13 + 63k2. Hence, 2 = 74k1 − 63k2. We shall follow the Extended
Euclidean Algorithm : 74 = 63 × 1 + 11, 63 = 11 × 6 − 3, 11 = (−3) × (−3) + 2. So
2 = −(−3)×(−3)+11 = (63−11×6)×3+11 = 63×3−(74−63)×17 = 74×(−17)+63×20.
Thus, k1 = −17 + 63n and x = 11 + 74 × (−17) + 63 × 74n = −1247 + 4662n. Modulo
63× 74 it is unique. More generally, we have the following theorem.

Theorem 1. Let m,n > 1, a, b be integers. Then there is a solution x = x0 of x ≡m a
and x ≡n b iff gcd(m,n)|b− a. If x0 is a solution then the set of all solutions x coincides
with the set of x satisfying x ≡lcm(m,n) x0.

Proof. x = b + nk1 = a + mk2. Hence, b − a = mk2 − nk1 which can be solved iff
gcd(m,n)|b− a. Suppose x0 = b+ nk. Then x = x0 + n m

gcd(m,n)
≡lcm(m,n) x0.

As a corollary, if m,n are coprime, then there is a solution unique upto multiples of
mn. Actually, the same principle works for more number of congruences as well.

Theorem 2. Let m1,m2, . . .mn be pairwise coprime naturals > 1 and a1, . . . , an ∈ Z.
Then there is a solution to x ≡mi

ai ∀ i that is unique upto multiples of m1m2 . . .mn.

Proof. We induct on n (n = 2 being done above). Assume truth for 1, 2, 3 . . . , n− 1. By
the induction hypothesis, there exists an x0 satisfying the first n − 1 congruences. The
general solution is x = x0 + m1m2 . . .mn−1u for all integers u. Now we want to solve
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x0 +m1m2 . . .mn−1u = an +mnt, i.e., (m1 . . .mn−1)u−mnt = an−x0. Since m1 . . .mn−1

and mn are coprime, this equation can be solved with u = u0 + mnh where h is any
integer. Hence, x = x0 +m1 . . .mn−1u0 +m1 . . .mnh thus proving the result.
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