
Notes for 6 Feb (Wednesday)

1 The road so far...

1. Proved some corollaries of Bezout’s identity (like the relationship between gcd(ab,m)
and gcd(a,m)gcd(b,m).

2. Solved linear Diophantine equations.

3. Defined lcm and found a formula for it.

4. Proved that the number of primes is infinite.

2 Modular arithmetic

How does one create a nice password ? (Hint: Take your current password and tweak
it by “adding 1 to every letter”.) These considerations lead us (among other things) to
modular arithmetic. Basically, we want to do ”clock arithmetic”, i.e., 3 : 00 + 11 hours
is 2 : 00.

Def : Two integers a, b are said to be congruent modulo a positive natural number
m ≥ 2 iff a = b + xm for some integer x. They are written as a ≡ b mod m. Here is an
important property.

Lemma 2.1. Let m ≥ 2 be a natural number. Then every n is uniquely congruent modulo
m to some number r in S = {0, 1, 2 . . . ,m− 1}.

Proof. By the division theorem, n = mq + r for a unique r. Therefore, n ≡ r mod m. If
n ≡ t mod m for a t ∈ S, then n = mq1 + t and hence by uniqueness of the remainder,
t = r.

Generalising the above lemma to integers, such an r is called a least non-negative
resiude modulo n. Likewise, it is easy to prove that

Lemma 2.2. Two numbers are congruent modulo m iff their least non-negative residues
are equal.

The point of this relation of being congruent is that

Theorem 1. Fix a natural m ≥ 2. Then define a relation on Z as a ∼ b if a ≡ b mod m.
This relation is an equivalence relation.
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Proof. This theorem follows trivially from the equality of the least non-negative residues.

Much more interestingly, this relation respects multiplication and addition.

Lemma 2.3. Fix an integer m ≥ 2. For all integers, a, b, c, a′, b′, c′, k such that a ≡
a′ mod m and b ≡ b′ modm. Then,

1. ka ≡ ka′

2. a + b ≡ a′ + b′

3. ab ≡ a′b′.

Proof. We prove only the third part because the rest are similar. Note that a = a′ + q1m
and b = b′ + q2m. Hence ab = a′b′ + m(q1q2m + a′ + b′).

Unfortunately, the cancellation law does not work. For instance, 0 = 2.3 mod 6 =
2 mod 6 . 3 mod 6. We shall return to this issue later on. Here is a useful and easy
proposition.

Lemma 2.4. Suppose a ≡ b mod m.

1. If d divides m, then a ≡ b mod d.

2. For all naturals e, ae ≡ be mod m.

The point of modular arithmetic is to make many divisibility calculations easy.

1. Suppose we want 637 mod 13. Now 62 ≡ 36 ≡ −3, 66 ≡ (62)3 ≡ −27 ≡ −1. Thus
636 ≡ (66)6 ≡ 1 and 637 ≡ 6.

2. A number a is divisible by

(a) 3 iff the sum of digits is so : a =
∑

ai10i. Thus, a ≡
∑

ai mod 3.

(b) 9 iff the sum of digits is so : Similar to 3.

(c) 11 iff the alternating sum of digits is so : a ≡
∑

ai(−1)i.

We have a useful proposition.

Proposition 2.1. If a ≡ b mod r and a ≡ b mod s then a ≡ b mod lcm(r, s).

Proof. (a− b) = rc and (a− b) = sd. Thus a− b is divisible by the lcm of r, s.

Here is an example : Claim : 2340 ≡ 1 mod 341. The point is that 341 = 11.31.
Also, 25 = 32 ≡ −1 mod 11 and 1 mod 31. So (25)68 ≡ 1 modulo 11, 31. Thus by the
proposition we are done.
Finally, we have the following useful proposition about cancellation.

Theorem 2. If ra ≡ rb mod m then a ≡ b mod m
gcd(r,m)

.

Proof. Note that r(a − b) = cm meaning r
gcd(m,r)

(a − b) = c m
gcd(r,m)

and hence a − b is

divisible by m
gcd(r,m)

(because it is coprime to r
gcd(m,r)

).
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As a special case,

Proposition 2.2. If r,m are coprime, then ra ≡ rb mod m implies that a ≡ b mod m.

Now we are in a position to solve congruence equations. There are two kinds : Solve
for an integer x given a, b,m such that

1. x + a ≡ b mod m. This equation is easy : x ≡ (b− a) mod m.

2. ax ≡ b mod m. This cannot always be solved. (2x ≡ 3 mod 6 cannot have a
solution.)

Proposition 2.3. ax ≡ b mod m is solvable iff gcd(a.m) divides b.

Proof. Indeed, ax = b+qm iff gcd(a,m) divides b by solving the linear Diophantine
equation.

Example : Solve 10x ≡ 14 mod 18. This equation has a solution because gcd(10, 18) =
2 divides 14. Now, following the extended Euclidean algorithm we get 10.2−18 = 2
and hence 10.14− 18.7 = 14. Thus x = 14. (Actually, x = 5 also works.)

A special case is as follows.

Proposition 2.4. If gcd(a,m) = 1, then ax ≡ 1 mod m has a unique solution modulo
m.

Proof. It has a solution. If x, y are solutions, then a(x−y) ≡ 0 mod m. Since gcd(a,m) =
1, we can cancel a on both sides and get x ≡ y mod m.

Also, if gcd(a,m) = 1, ax ≡ b mod m has a unique solution modulo m for all b. Like
in the case of Diophantine equations, the solutions of ax ≡ 0 are x = km

gcd(a,m)
.

Next we take the fact that the equivalence relation ≡ respects addition and multipli-
cation more seriously. Essentially, we want to study arithmetic on the equivalence classes.
Before we do so, here are two case studies :

1. Suppose we consider all even numbers to be a single entity and likewise odd. Then,
we can define addition as even+odd = odd+even = odd, even+even = even, odd+
odd = even. Moreover, multiplication is even.odd = odd.even = even, even.even =
even, odd.odd = odd. It is easy to check that addition and multiplication behave
well with each other (distributivity, associativity, etc).

2. Let’s try to play the same game by considering “positive”, “negative”, and “zero”
as single entities. The problem here is that positive + negative is ambiguous (it
really depends on what the positive and negative numbers actually are, not just
their signs).
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