Notes for 6 March (Wednesday)

1 The road so far...

1. Stated the Diffey-Hellman protocol and the RSA algorithm. (BTW RSA works because m is squarefree. I forgot to mention this.)
2. Stated and proved the Chinese Remainder Theorem.

2 The Chinese Remainder theorem

We shall use the Chinese Remainder theorem to prove properties about $\phi(m)$. Before we do so, here is a proposition that is sort of a converse to what we did earlier.

Theorem 1. Every ring homomorphism $g: \mathbb{Z} / m \mathbb{Z} \rightarrow S$ where S is a commutative ring "lifts" to a ring homomorphism $f: \mathbb{Z} \rightarrow S$ so that $m \mathbb{Z} \in \operatorname{ker}(f)$. ("Lifts" means that g is induced from f in the way we studied earlier.)

Proof. Define $f(n)=g([n])$. This map is a composition of homomorphisms and is hence a homomorphism. The kernel property is obviously satisfied.

Now we define a useful way to construct new rings out of old ones. Suppose ($R, 0_{R}, 1_{R},+_{R},{ }_{R}$) and ($S, 0_{S}, 1_{S},+_{S}, . S$) are two rings. Then we can define a ring structure on $R \times S$ as follows : $0_{R \times S}=\left(0_{R}, 0_{S}\right), 1_{R \times S}=\left(1_{R}, 1_{S}\right),(a, b)+_{R \times S}(c, d):=\left(a+_{R} c, b+_{S} d\right)$, $(a, b)_{\cdot R \times S}(c, d)=\left(a \cdot{ }_{R} c, b \cdot{ }_{S} d\right),-(a, b)=(-a,-b)$. It can be easily verified that these operations define a ring. In fact, here is a way to construct a group $G \times H$ out of two groups $G, H:(a, b) *(c, d)=(a * b, c * d), e_{G \times H}=\left(e_{G}, e_{H}\right)$. Note however, that the product of fields is not a field! If R, S are commutative, then so is $R \times S$ (and likewise for groups). Here is a proposition about products.

Lemma 2.1. 1. (a, b) is a unit in $R \times S$ iff a is a unit in R and b is a unit in S.
2. (a, b) is a zero divisor iff $(a, b) \neq(0,0)$ and either a is 0 or a zero-divisor, or b is 0 or a zero-divisor.

Proof. The first part is trivial. For the second part, if R is not commutative, (a, b) is a left (likewise, right) zero divisor iff it is not zero and there exists a non-zero (c, d) such that $(a, b) \cdot(c, d)=(0,0)$ (likewise $(c, d) \cdot(a, b)=(0,0))$. W.LOG assume it is a left zero divisor. This observation means that $a . c=0$ and $b . d=0$. Hence either $a=0$ or a zero divisor and likewise for b.

As a corollary,
Lemma 2.2. If R, S are commutative rings whose groups of units are U_{R}, U_{S}, then $U_{R \times S}=U_{R} \times U_{S}$ via the identity map.

Here is a very important theorem (which is basically equivalent to the Chinese Remainder theorem).

Theorem 2. Let $m=r s$ where r, s are coprime natural numbers ≥ 2. Then there is an isomorphism of rings $\psi: \mathbb{Z} / m \mathbb{Z} \rightarrow \mathbb{Z}_{r} \times \mathbb{Z}_{s}$ given by $\psi\left([a]_{m}\right)=\left([a]_{r},[a]_{s}\right)$.

Proof. This map is well-defined because r, s divide m. We need to prove that it is $1-1$ and onto. Now, the kernel consists of a such that $a=r k_{1}=s k_{2}$ and hence $a=l c m(r, s) k_{3}=$ $r s k_{3}$ which means that $[a]_{m}=0$. So it is $1-1$. If $\left([x]_{r},[y]_{s}\right)$ is in the codomain, we need to prove that there is an a such that $a=x+r k_{1}$ and $a=y+s k_{2}$. By the Chinese Remainder Theorem, such an exists and is unique upto m. Alternatively, a $1-1$ map between sets of the same finite cardinality is onto.

This theorem provides an alternate method of solving $x \equiv_{r} b$ and $x \equiv_{s} c$. Indeed, suppose e_{1} solves, $e_{1} \equiv_{r} 1$ and $e_{1} \equiv_{s} 0$, then $\psi\left(e_{1}\right)=(1,0)$. Likewise, there is an e_{2} such that $\psi\left(e_{2}\right)=(0,1)$. Thus, $\psi\left(b e_{1}+c e_{2}\right)=(b, c)$ which is what we wanted. The Chinese Remainder theorem in the above form leads us to prove an important result and a corollary.

Theorem 3. If $m=r s$, and $\operatorname{gcd}(r, s)=1$, then $\psi: \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{r} \times \mathbb{Z}_{s}$ given as above is an isomorphism between the groups of units U_{m} and $U_{r} \times U_{s}$.

Proof. Note that the ring isomorphism ψ induces a group homomorphism between the groups of units. Likewise, the inverse of the ring isomorphism also induces a group homomorphism in the other direction, which is an inverse of the previous group homomorphism.

As a corollary,
Theorem 4. If $m=r s$ and $g c d(r, s)=1$, then $\phi(m)=\phi(r) \phi(s)$.
Using induction, $\phi(m)=\Pi_{i} \phi\left(p_{i}^{e_{i}}\right)$.

3 Polynomials

Definition of a polynomial $p(x)$ of degree with coefficients in a commutative ring R : It is an element of the set R^{d+1} written as $p(x)=a_{0}+a_{1} x+\ldots a_{d} x^{d}$. The set of polynomials is denoted as $R[x]=\cup_{d \geq 0} R^{d+1}$. This set is much better written as R^{∞} where all but finitely many elements are $0 . R[x]$ has a ring operation defined as follows : $1:=(1,0,0 \ldots)$ is the multiplicative identity, $0:=(0,0,0 \ldots)$ is the additive identity. Addition is componentwise. Multiplication is defined as $\left(a_{0}, \ldots, a_{d_{1}}, 0,0 \ldots\right) .\left(b_{0}, \ldots, b_{d_{2}}, 0,0 \ldots\right)=\left(a_{0} b_{0}, a_{0} b_{1}+\right.$ $\left.a_{1} b_{0}, \ldots, \sum_{i=0}^{d_{1} d_{2}} a_{i} b_{k-i}, 0,0, \ldots\right)$. It can be easily proven that multiplication makes it into a commutative monoid and distributivity holds. Hence $R[x]$ is a commutative ring. The variable x is identified with $(0,1,0 \ldots)$.

