Notes for 7 Feb (Thursday)

1 The road so far...

1. Did modular arithmetic and defined an equivalence relation.
2. Main point - "You are invertible if you are coprime".

2 Rings and Fields

It is high time we defined rings. Let us recall the definition of a group : A group $(G, *)$ is a set G with a binary operation $*: G \times G \rightarrow G$ satisfying

1. Associativity : $(a * b) * c=a *(b * c)$.
2. Existence of identity : $\exists e$ such that $a * e=e * a=a$ for all $a \in G$.
3. Existence of inverses : For every $a \in G$, there exists a b_{a} such that $b_{a} * a=a * b_{a}=e$.

We proved that inverses and identity are unique in a group. If commutativity holds, such a group is called an Abelian group. An example of an Abelian group is \mathbb{Z} and that of a non-Abelian group is S_{n}. (Also, invertible 2×2 matrices of real numbers.)
A ring $(R,+, ., 0,1)$ is a set R with two binary operations,.$+: R \times R \rightarrow R$ and two distinguished elements 0 (the additive identity) and 1 (the multiplicative identity) satisfying

1. $(R,+, 0)$ is an Abelian group. So 0 is unique.
2. ($R, ., 1$) is a monoid, i.e., associativity and existence of identity hold (but not necessarily inverses). So 1 is unique.
3. Distributivity holds : $a \cdot(b+c)=a \cdot b+a \cdot c,(b+c) \cdot a=b \cdot a+c \cdot a$.

If multiplication is commutative, such a ring is called a commutative ring. (A very important class of rings.) Here are examples and non-examples of rings :

1. $(\mathbb{Z},+, \times, 0,1)$ is a commutative ring.
2. $(\mathbb{Q},+, \times, 0,1)$ is a commutative ring
3. $\left.\operatorname{Mat}(n, \mathbb{R}),+, \times,[0]_{n \times n}, I d_{n \times n}\right)$ is a non-commutative ring.
4. Polynomials in any fixed number of variables with integral coefficients form a commutative ring.
5. Continuous functions from \mathbb{R} to \mathbb{R} form a commutative ring.
6. ($\{$ Even, $O d d\},+, .$, even, odd $)$ is a commutative ring. This ring is finite in cardinality (unlike all the above ones).
7. \mathbb{R}^{3} under vector addition and cross product do not form a ring because associativity is lost.
8. ($\{$ Positive, 0, Negative $\}$ cannot be made into a ring in the usual way because addition is ill-defined.
9. \mathbb{N} is not a ring in the usual way because addition is not a group.
$10 . \mathbb{R}_{+}$is not a ring for the same reason.
The point of rings is that you can pretend they are like integers. A subring S of $(R,+, ., 0,1)$ is a subset of R containing 0,1 such that $(S,+, ., 0,1)$ is a ring. For S to be a subring, it simply needs to be closed under addition, multiplication, and additive inverses. For instance, \mathbb{Z}, \mathbb{Q}, and \mathbb{R} are subrings of \mathbb{C}.

An element a of a commutative ring is called a unit if it has a multiplicative inverse. For example, non-invertible matrices are not units. By the way, the set of units is a group under multiplication. Indeed, if a, b have inverses, then $(a . b)^{-1}=a^{-1} b^{-1}$.

A field $(F,+, ., 0,1)$ is a commutative ring with at least 2 elements (i.e., $0 \neq 1$) where every non-zero element has a multiplicative inverse, i.e., $(F-\{0\}, ., 1)$ is an Abelian group, or alternatively, all the non-zero elements are units. Here are examples and non-examples of fields :

1. $(\mathbb{Z},+, \times, 0,1),\left(\operatorname{Mat}(n, \mathbb{R}),+, \times,[0]_{n \times n}, I d_{n \times n}\right)$ are not fields because of lack of multiplicative inverses.
2. $(\mathbb{Q},+, \times, 0,1),(\mathbb{R},+, \times, 0,1)$, and $(\mathbb{C},+, \times, 0,1)$ are fields.
3. ($\{$ Even, Odd $\},+, .$, even, odd $)$ is a field. This field is a finite field.
4. Polynomials with integral (or even real) coefficients do not form a field.
5. Rational functions with rational (or real or complex) coefficients form a field.

The point of fields is that you can pretend that they are basically like rational numbers.
An important example of a ring is furnished by the quotient set of \mathbb{Z} under the equivalence relation \equiv_{m}. Recall that $a \equiv_{m} b$ iff $a=b+k m$. The quotient set (i.e. set of equivalence classes) is written as $\mathbb{Z} / m \mathbb{Z}$. Every element is written as $[a]_{m}$ (the integer a is said to be a representative of the equivalence class). We can define

1. Addition : $[a]_{m}+[b]_{m}:=[a+b]_{m}$. Addition is well-defined because $a^{\prime}+b^{\prime} \equiv_{m} a+b$. Addition is a group with $[0]_{m}$ as the additive identity.
2. Multiplication : $[a]_{m}[b]_{m}:=[a b]_{m}$. Likewise, multiplication is well-defined. Multiplication is a monoid with $[1]_{m}$ as the identity.

Note that $\left([a]_{m}+[b]_{m}\right)[c]_{m}=[a+b]_{m}[c]_{m}=[a c+b c]_{m}=[a]_{m}[c]_{m}+[b]_{m}[c]_{m}$. Therefore, $\mathbb{Z} / m \mathbb{Z}$ is a commutative ring. Note that elements of $\mathbb{Z} / m \mathbb{Z}$ are $\left\{[0]_{m},[1]_{m} \ldots[m-1]_{m}\right.$. (Another set of representatives is $\left\{[1]_{m},[2]_{m}, \ldots[m]_{m}\right.$ for instance.) Certainly, $\mathbb{Z} / 6 \mathbb{Z}$ is not a field because $[2]_{6}$ has no multiplicative inverse.

