
Notes for 7 Feb (Thursday)

1 The road so far...

1. Did modular arithmetic and defined an equivalence relation.

2. Main point - “You are invertible if you are coprime”.

2 Rings and Fields

It is high time we defined rings. Let us recall the definition of a group : A group (G, ∗)
is a set G with a binary operation ∗ : G×G→ G satisfying

1. Associativity : (a ∗ b) ∗ c = a ∗ (b ∗ c).

2. Existence of identity : ∃e such that a ∗ e = e ∗ a = a for all a ∈ G.

3. Existence of inverses : For every a ∈ G, there exists a ba such that ba∗a = a∗ba = e.

We proved that inverses and identity are unique in a group. If commutativity holds, such
a group is called an Abelian group. An example of an Abelian group is Z and that of a
non-Abelian group is Sn. (Also, invertible 2× 2 matrices of real numbers.)
A ring (R,+, ., 0, 1) is a set R with two binary operations +, . : R × R → R and two
distinguished elements 0 (the additive identity) and 1 (the multiplicative identity) satis-
fying

1. (R,+, 0) is an Abelian group. So 0 is unique.

2. (R, ., 1) is a monoid, i.e., associativity and existence of identity hold (but not nec-
essarily inverses). So 1 is unique.

3. Distributivity holds : a.(b + c) = a.b + a.c, (b + c).a = b.a + c.a.

If multiplication is commutative, such a ring is called a commutative ring. (A very
important class of rings.) Here are examples and non-examples of rings :

1. (Z,+,×, 0, 1) is a commutative ring.

2. (Q,+,×, 0, 1) is a commutative ring.

3. (Mat(n,R),+,×, [0]n×n, Idn×n) is a non-commutative ring.
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4. Polynomials in any fixed number of variables with integral coefficients form a com-
mutative ring.

5. Continuous functions from R to R form a commutative ring.

6. ({Even,Odd},+, ., even, odd) is a commutative ring. This ring is finite in cardinal-
ity (unlike all the above ones).

7. R3 under vector addition and cross product do not form a ring because associativity
is lost.

8. ({Positive, 0, Negative} cannot be made into a ring in the usual way because ad-
dition is ill-defined.

9. N is not a ring in the usual way because addition is not a group.

10. R+ is not a ring for the same reason.

The point of rings is that you can pretend they are like integers. A subring S of
(R,+, ., 0, 1) is a subset of R containing 0, 1 such that (S,+, ., 0, 1) is a ring. For S
to be a subring, it simply needs to be closed under addition, multiplication, and additive
inverses. For instance, Z,Q, and R are subrings of C.

An element a of a commutative ring is called a unit if it has a multiplicative inverse.
For example, non-invertible matrices are not units. By the way, the set of units is a group
under multiplication. Indeed, if a, b have inverses, then (a.b)−1 = a−1b−1.

A field (F,+, ., 0, 1) is a commutative ring with at least 2 elements (i.e., 0 6= 1) where
every non-zero element has a multiplicative inverse, i.e., (F−{0}, ., 1) is an Abelian group,
or alternatively, all the non-zero elements are units. Here are examples and non-examples
of fields :

1. (Z,+,×, 0, 1), (Mat(n,R),+,×, [0]n×n, Idn×n) are not fields because of lack of mul-
tiplicative inverses.

2. (Q,+,×, 0, 1), (R,+,×, 0, 1), and (C,+,×, 0, 1) are fields.

3. ({Even,Odd},+, ., even, odd) is a field. This field is a finite field.

4. Polynomials with integral (or even real) coefficients do not form a field.

5. Rational functions with rational (or real or complex) coefficients form a field.

The point of fields is that you can pretend that they are basically like rational numbers.
An important example of a ring is furnished by the quotient set of Z under the

equivalence relation ≡m. Recall that a ≡m b iff a = b + km. The quotient set (i.e. set of
equivalence classes) is written as Z/mZ. Every element is written as [a]m (the integer a
is said to be a representative of the equivalence class). We can define

1. Addition : [a]m + [b]m := [a+ b]m. Addition is well-defined because a′+ b′ ≡m a+ b.
Addition is a group with [0]m as the additive identity.

2. Multiplication : [a]m[b]m := [ab]m. Likewise, multiplication is well-defined. Multi-
plication is a monoid with [1]m as the identity.
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Note that ([a]m + [b]m)[c]m = [a + b]m[c]m = [ac + bc]m = [a]m[c]m + [b]m[c]m. Therefore,
Z/mZ is a commutative ring. Note that elements of Z/mZ are {[0]m, [1]m . . . [m − 1]m.
(Another set of representatives is {[1]m, [2]m, . . . [m]m for instance.) Certainly, Z/6Z is
not a field because [2]6 has no multiplicative inverse.

3


	The road so far...
	Rings and Fields

