Notes for 7 March (Thursday)

1 The road so far...

1. Proved and stated the Chinese remainder theorem in a different way by defining products of rings (and groups).
2. Defined the ring of polynomials $R[x]$.

2 Polynomials

Note that R is itself a subring of $R[x]$ by $a \rightarrow(a, 0,0, \ldots)$. By convention, the zero polynomial is taken to have degree $-\infty$. The ring of polynomials in k variables x_{1}, \ldots, x_{k} with coefficients in R is recursively defined as $R\left[x_{1}, \ldots, x_{k}\right]=R\left[x_{1}, \ldots, x_{k-1}\right]\left[x_{k}\right]$. Here is our first lemma. Its proof is straightforward.

Lemma 2.1. Let R be a commutative ring. For every non-zero polynomials p and q, if the leading coefficient of $p(o r q)$ is a non zero-divisor in R then $\operatorname{deg}(p q)=\operatorname{deg}(p)+\operatorname{deg}(q)$.

Two polynomials are equal iff their coefficients are equal. Here is a subtle definition in this regard: Given $p(x)=\left(a_{0}, a_{1}, \ldots, a_{d}, 0,0 \ldots\right) \in R[x]$, consider the function $f: R \rightarrow R$ given by $f(a)=p(a)=a_{0}+a_{1} a+a_{2} a^{2}+\ldots a_{d} a^{d}$. The subtle point is that f does NOT always determine p, i.e., if $f_{1}=f_{2}$, this does not mean that $p_{1}=p_{2}$! Indeed, consider $p(x) \in \mathbb{F}_{2}[x]$ given by $p(x)=x+x^{2}$. Now $f(0)=0, f(1)=0$. So $f \equiv 0$ as a function on \mathbb{F}_{2} !

Now we try develop some number-theory-esque results about polynomials. It is useful to call polynomials of the form $p(x)=x^{n}+a_{n-1} x^{n-1} \ldots$ as monic polynomials.

Theorem 1. Let R be a commutative ring. Let f, g be two polynomials in $R[x]$ with $f \neq 0$ and suppose the leading coefficient of f is a unit in R. Then there are polynomials q, r with $\operatorname{deg}(r)<\operatorname{deg}(f)$ such that $g=f q+r$. These q, r are unique.

Proof. Let $f=a_{n} x^{n}+\ldots+a_{0}$. If $\operatorname{deg}(g)<\operatorname{deg}(f)$, then $q=f$. If $g=b_{n} x^{n}+\ldots+b_{0}$, then $g-b_{n} a_{n}^{-1} f(x)$ has degree $<f$ and hence $g=b_{n} a_{n}^{-1} f(x)+r(x)$. If $\operatorname{deg}(g)=\operatorname{deg}(f)+s$, then we induct on s. For $s=0$ we are done. Assuming truth for $0,1,2 \ldots, s-1$, note that $g-b_{n+s} a_{n}^{-1} x^{s} f(x)$ has smaller degree and hence equals (by the induction hypothesis) $q_{1}(x) f(x)+r(x)$. Thus, $g=\left(q_{1}(x)+b_{n+s} a_{n}^{-1} x^{s}\right) f(x)+r(x)$.
Uniqueness: If $f q_{1}+r_{1}=f q_{2}+r_{2}$, then $f\left(q_{1}-q_{2}\right)=r_{2}-r_{1}$. If $q_{1}-q_{2}=c_{d} x^{d}+\ldots+c_{0}$ where $c_{d} \neq 0$, then comparing coefficients we see that $c_{d} a_{n} \neq 0$ is the coefficient of x^{d+n} in $r_{2}-r_{1}$, a contradiction.

As a corollary, the division algorithm holds for $\mathbb{F}[x]$ where \mathbb{F} is a field. Now we state a high-school theorem (whose proof is trivial).

Theorem 2. If $f(x)$ is a polynomial with coefficients in a field \mathbb{F}, and $a \in \mathbb{F}$, then $f(a)$ is the remainder when dividing $f(x)$ by $x-a$.

As a special case, if $f(x) \in \mathbb{F}[x]$, then $f(a)=0$ iff $f(x)$ is divisible by $x-a$. A simple induction argument on the degree shows D'Alembert's theorem that a nonzero degree n polynomial $f(x) \in \mathbb{F}[x]$ has at most n distinct roots in \mathbb{F}. This simple observation can be used to prove the following theorem.

Theorem 3. If \mathbb{F} is a field with infinitely many elements, and $f(x), g(x) \in \mathbb{F}[x]$, then $f(x)=g(x)$ iff $f(a)=g(a) \forall a \in \mathbb{F}$.

Now we can implement Euclid's algorithm for polynomials. Before doing so, we define a gcd of $f, g \in \mathbb{F}[x]$ as a polynomial $p(x)$ that divides f, g and has the largest degree among such divisors.

Theorem 4. Consider the recursive algorithm $r_{i}=r_{i+1} q_{i+2}+r_{i+2}$ where $g=f q_{1}+r_{1}$, $f=r_{1} q_{2}+r_{2}$. It terminates after a finite number (say $n+1$) steps such that $r_{n-1}=$ $r_{n} q_{n+1}+0$. Also, r_{n} is a $\operatorname{gcd}(f, g)$.

Proof. Indeed, in each step the degree of the remainder decreases by at least 1 . By the well ordering principle of the naturals, in a finite number (n) of steps the degree reaches 0 . Then $r_{n-2}=r_{n-1} q_{n}+r_{n}$ where $r_{n} \in \mathbb{F}$. Hence, $r_{n-1}=r_{n} r_{n}^{-1}+0$. Now, if $g=f q+r$, then p divides g and f iff it divides f and r. Hence if p is a gcd of f, g then it is one of f, r. Thus, a gcd of r_{n-1}, r_{n} is r_{n} itself which is a gcd of (f, g).

It is important to say "a gcd" because there surely is more than one. Indeed, $p(x) a$ where $a \neq 0 \in \mathbb{F}$ is a gcd. The following lemma helps us pick a standard one.

Lemma 2.2. If p, q are gcds of $f, g \in \mathbb{F}[x]$, then $p=q r$ where $r \in \mathbb{F}$. Hence, normalising a gcd to be monic fixes it uniquely.

Proof. Firstly, every common divisor of f, g divides a gcd of f, g obtained by the Euclidean algorithm (HW). So if p, q are gcds then $p=q r$ where $\operatorname{deg}(r)=0$ by definition. Hence $r \in \mathbb{F}$.

Just as in the case of the integers and Gaussian integers, following the Euclidean algorithm backwards and solving for the remainders yields the Bezout identity : Every $\operatorname{gcd} d$ of $f, g \in \mathbb{F}[x]$ can be written as $d=r f+s g$. As before, g, f are said to be coprime if $\operatorname{gcd}(g, f)=1$.

Here is another useful little lemma.
Theorem 5. If R is an integral domain, i.e., it has no zero divisors, then so is $R[x]$.
Proof. Suppose not, i.e., there exist non-zero $f(x)=a_{n} x^{n}+\ldots+a_{0}$ and $g(x)=b_{d} x^{d}+$ $b_{d-1} x^{d-1}+\ldots$ such that $f(x) g(x)=0$. Comparing the leading coefficients we see that $a_{n} b_{d}=0$ and hence a_{n} is a zero-divisor thus contradicting the assumption that R has none.

