
Notes for 7 March (Thursday)

1 The road so far...

1. Proved and stated the Chinese remainder theorem in a different way by defining
products of rings (and groups).

2. Defined the ring of polynomials R[x].

2 Polynomials

Note that R is itself a subring of R[x] by a → (a, 0, 0, . . .).By convention, the zero
polynomial is taken to have degree −∞. The ring of polynomials in k variables x1, . . . , xk

with coefficients in R is recursively defined as R[x1, . . . , xk] = R[x1, . . . , xk−1][xk]. Here
is our first lemma. Its proof is straightforward.

Lemma 2.1. Let R be a commutative ring. For every non-zero polynomials p and q, if the
leading coefficient of p (or q) is a non zero-divisor in R then deg(pq) = deg(p) + deg(q).

Two polynomials are equal iff their coefficients are equal. Here is a subtle definition in
this regard : Given p(x) = (a0, a1, . . . , ad, 0, 0 . . .) ∈ R[x], consider the function f : R→ R
given by f(a) = p(a) = a0 + a1a + a2a

2 + . . . ada
d. The subtle point is that f does NOT

always determine p, i.e., if f1 = f2, this does not mean that p1 = p2! Indeed, consider
p(x) ∈ F2[x] given by p(x) = x + x2. Now f(0) = 0, f(1) = 0. So f ≡ 0 as a function on
F2 !

Now we try develop some number-theory-esque results about polynomials. It is useful
to call polynomials of the form p(x) = xn + an−1x

n−1 . . . as monic polynomials.

Theorem 1. Let R be a commutative ring. Let f, g be two polynomials in R[x] with
f 6= 0 and suppose the leading coefficient of f is a unit in R. Then there are polynomials
q, r with deg(r) < deg(f) such that g = fq + r. These q, r are unique.

Proof. Let f = anx
n+ . . .+a0. If deg(g) < deg(f), then q = f . If g = bnx

n+ . . .+b0, then
g − bna

−1
n f(x) has degree < f and hence g = bna

−1
n f(x) + r(x). If deg(g) = deg(f) + s,

then we induct on s. For s = 0 we are done. Assuming truth for 0, 1, 2 . . . , s − 1, note
that g−bn+sa

−1
n xsf(x) has smaller degree and hence equals (by the induction hypothesis)

q1(x)f(x) + r(x). Thus, g = (q1(x) + bn+sa
−1
n xs)f(x) + r(x).

Uniqueness : If fq1 + r1 = fq2 + r2, then f(q1− q2) = r2− r1. If q1− q2 = cdx
d + . . .+ c0

where cd 6= 0, then comparing coefficients we see that cdan 6= 0 is the coefficient of xd+n

in r2 − r1, a contradiction.
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As a corollary, the division algorithm holds for F[x] where F is a field. Now we state
a high-school theorem (whose proof is trivial).

Theorem 2. If f(x) is a polynomial with coefficients in a field F, and a ∈ F, then f(a)
is the remainder when dividing f(x) by x− a.

As a special case, if f(x) ∈ F[x], then f(a) = 0 iff f(x) is divisible by x− a. A simple
induction argument on the degree shows D’Alembert’s theorem that a nonzero degree n
polynomial f(x) ∈ F[x] has at most n distinct roots in F. This simple observation can
be used to prove the following theorem.

Theorem 3. If F is a field with infinitely many elements, and f(x), g(x) ∈ F[x], then
f(x) = g(x) iff f(a) = g(a) ∀ a ∈ F.

Now we can implement Euclid’s algorithm for polynomials. Before doing so, we define
a gcd of f, g ∈ F[x] as a polynomial p(x) that divides f, g and has the largest degree among
such divisors.

Theorem 4. Consider the recursive algorithm ri = ri+1qi+2 + ri+2 where g = fq1 + r1,
f = r1q2 + r2. It terminates after a finite number (say n + 1) steps such that rn−1 =
rnqn+1 + 0. Also, rn is a gcd(f, g).

Proof. Indeed, in each step the degree of the remainder decreases by at least 1. By the
well ordering principle of the naturals, in a finite number (n) of steps the degree reaches
0. Then rn−2 = rn−1qn + rn where rn ∈ F. Hence, rn−1 = rnr

−1
n + 0. Now, if g = fq + r,

then p divides g and f iff it divides f and r. Hence if p is a gcd of f, g then it is one of
f, r. Thus, a gcd of rn−1, rn is rn itself which is a gcd of (f, g).

It is important to say “a gcd” because there surely is more than one. Indeed, p(x)a
where a 6= 0 ∈ F is a gcd. The following lemma helps us pick a standard one.

Lemma 2.2. If p, q are gcds of f, g ∈ F[x], then p = qr where r ∈ F. Hence, normalising
a gcd to be monic fixes it uniquely.

Proof. Firstly, every common divisor of f, g divides a gcd of f, g obtained by the Euclidean
algorithm (HW). So if p, q are gcds then p = qr where deg(r) = 0 by definition. Hence
r ∈ F.

Just as in the case of the integers and Gaussian integers, following the Euclidean
algorithm backwards and solving for the remainders yields the Bezout identity : Every
gcd d of f, g ∈ F[x] can be written as d = rf + sg. As before, g, f are said to be coprime
if gcd(g, f) = 1.

Here is another useful little lemma.

Theorem 5. If R is an integral domain, i.e., it has no zero divisors, then so is R[x].

Proof. Suppose not, i.e., there exist non-zero f(x) = anx
n + . . . + a0 and g(x) = bdx

d +
bd−1x

d−1 + . . . such that f(x)g(x) = 0. Comparing the leading coefficients we see that
anbd = 0 and hence an is a zero-divisor thus contradicting the assumption that R has
none.
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