
Notes for 8th Jan (Tuesday)

1 The road so far...

1. Defined partial, total, and well orders. Stated the well ordering principle and Zorn’s
lemma.

2. Defined cardinality and proved that |X| < |P (X)|.

2 Cardinality

This means that N has strictly “smaller” than its power set. A natural question is :

The continuum hypothesis : Is there any set in between the naturals and its power
set ? That is, one that admits an injection from the naturals, but not a surjection and
does not surject to the power set of the naturals ?

Paul Cohen won a fields medal for proving that this question can neither be proven
or disproven in ZFC.

3 Integers

So far we have addition, and a “cancellation” property but we do not have numbers to
add to 1 to get 0, i.e., you can borrow money but not lend it. So we want to define
integers as follows :
An integer is a pair of natural numbers (a, b) written as a− b.
But let’s be more precise. First, we need to know what an equivalence relation on a set
A is : It is a subset R in A× A such that

1. Reflexivity : (a, a) ∈ R

2. Symmetry : (a, b) ∈ R⇒ (b, a) ∈ R

3. Transitivity : (a, b) ∈ R, (b, c) ∈ R⇒ (a, c) ∈ R.

If (a, b) ∈ R we write a ≡ b. An equivalence relation partitions a set into equivalence
classes, i.e., subsets E such that they are disjoint and their union is A. Each E consists
of elements equivalent to one another.
Define an equivalence relation on pairs of natural numbers saying (a, b) ≡ (c, d) if
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a + d = b + c. This splits the pairs into equivalence classes. The set of these equiv-
alence classes (which is a subset of N×N) is called Z (integers). Every integer is written
as a− b instead of (a, b) where (a, b) is any representative of the equivalence class.

Addition : (a− b) + (c− d) is defined to be (a+ c)− (b+ d).

Multiplication : (a− b)× (c− d) = (ac+ bd)− (ad+ bc).
We need to show that these are well-defined, i.e. if we replace a − b with another

representative α−β such that a+β = b+α, then we should get the same integers in the
above definitions (and likewise for c− d replaced with γ − δ). Let’s verify that addition
is well-defined. Multiplication is similar.

We claim that (α + γ)− (β + δ) ≡ (a+ c)− (b+ d). Indeed,

(α + γ) + (b+ d) = b+ α + d+ γ = a+ β + c+ δ = (a+ c) + (β + δ)

Now define a map ι : N → Z as ι(n) = n − 0. This is a bijection that respects ad-
dition and multiplication. (Exercise.) Thus the natural numbers “sit” inside the integers.

The negation of an integer a−−b is defined as −(a− b) = b− a. One can prove the
trichotomy law, i.e., every integer is either 0, a positive natural number, or −n where n
is a positive natural number.

Now we may state and prove that integers satisfy all the nice properties that we are
used to :

1. x+ y = y + x

2. x+ 0 = 0 + x = x

3. x+ (−x) = (−x) + x = 0

4. (x+ y) + z = x+ (y + z)

5. x× y = y × x

6. x× (y + z) = x× y + x× z

7. (x× y)× z = x× (y × z)

8. x× 1 = 1× x = x

Objects that obey the above laws are called commutative rings. (So the properties above
say that Z is a commutative ring.) We can define subtraction of two integers x − y as
x+ (−y). (Check that this is well-defined.)

Some other properties are

1. No zero divisors (i.e. ab = 0 if and only if a = 0 or b = 0).
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2. Cancellation law : If ac = bc and c 6= 0 then a = b.

Ordering : n ≥ m if n = m+ a for some natural number a. If n ≥ m and n 6= m, we
say n > m. With this definition, it is easy to prove the usual properties of order :

1. a > b if and only if a− b is a positive natural number.

2. If a > b, then a+ c > b+ c.

3. If a > b, and c > 0 then ac > bc.

4. If a > b then −a < −b.

5. If a > b and b > c, then a > c.

6. Either a = b xor a > b xor a < b.

Finally, the set of integers has the same cardinality as that of natural numbers. Indeed,
a bijection is f(2n− 1) = n, f(2n) = −n.

4 Rational numbers

We do not know how to divide a banana into two equal parts. So now we define the
rational numbers formally -

The set Q of rational numbers is the set of equivalence classes of pairs of integers
(a, b) (written as a/b) where b 6= 0 such that a/b ≡ c/d⇔ ad = bc.

One can prove that rationals are countable (by first proving that N× N is so).

We may define negation as −p/q = (−p)/q, addition as p/q+ r/s = (ps+ qr)/qs and
multiplication as p/q × r/s = (pr)/(qs).

You can make Z sit bijectively in Q whilst respecting addition, multiplication (and
ordering as we shall see) via : ι(n) = n/1.

Define the reciprocal x−1 of a non-zero rational (i.e. when x 6= 0/1) as follows : If
x = p/q, then x−1 = q/p.

Properties of rationals :

1. x+ y = y + x

2. x+ (y + z) = (x+ y) + z

3. x+ 0 = 0 + x = x

4. x+ (−x) = (−x) + x = 0

5. xy = yx
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6. (xy)z = x(yz)

7. (x+ y)z = xz + yz

8. x.1 = 1.x = x

and finally,
x.x−1 = x−1.x = 1 if x 6= 0.
Objects satisfying the above properties are called “Fields”. (Q is a field.)
We define division of rationals x and y 6= 0 as x÷ y = xy−1.
We say that x is positive if x = p/q for two positive integers p and q 6= 0. x is negative
if x = −y for some positive rational y. Also, x is said to be ≥ y if x = y + z for some
positive rational and x > y if x ≥ y and x 6= y. Likewise for ≤.
We have the following properties of ordering :

1. x = 0 xor x is positive xor x is negative.

2. For every x and y, x = y xor x > y xor x < y.

3. If x < y then y > x.

4. x < y, y < z ⇒ x < z.

5. x < y ⇒ x+ z < y + z.

6. If x < y and z is positive, then, xz < yz.

4.1 A digression - Pythagorean triples

Suppose we want to find integers a, b, c such that a2 + b2 = c2. Then this is equivalent to
solving x2 + y2 = 1 for rational (x, y). A nice way to do this is using geometry. We just
want to find rational points on the unit circle S1. One such point is (1, 0). All the other
points are obtained using the following lemma.

Lemma 4.1. (x, y) ∈ S1 is rational if and only if the line joining it to (1, 0) has rational
slope.

Proof. Indeed, if y = m(x − 1), then of course m is rational if x and y are. Conversely,
x2 +m2(x− 1)2 = 1⇒ x2(1 +m2)− 2m2x+m2 − 1 = 0. Hence x = m2−1

m2+1
and y = ±2m

m2+1

implying that (x, y) is rational.

The above proof also produces a formula for all Pythagorean triples. This sort of
reasoning can be extended to more number of variables. Unfortunately, this is where the
fun stops. As we all know, xn+yn = zn does not have integral solutions when n ≥ 3. This
way of using geometry in number theory is vastly exploited in the subject of arithmetic
geometry (which was used along with other techniques to prove Fermat’s last theorem
by Wiles).
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