HW 4 (to be tested on Feb 15)

1. Solve Diophantine equations when a, b, e are not necessarily non-negative integers.
2. Show that $\operatorname{gcd}(a, m) \leq \operatorname{gcd}(a, m n)$ for any non-negative integers a, m, n.
3. Prove that for natural numbers $m, a, b>0$, the identity $\operatorname{mgcd}(a, b)=g c d(m a, m b)$ is satisfied.
4. You are given two hour glasses : a 6 -minute hourglass and an 11-minute hourglass. How can you measure 13 minutes using them?
5. Define the gcd of three natural numbers a, b, c and show that it is equal to $\operatorname{gcd}(a, \operatorname{gcd}(b, c))$. Also show that it is equal to $a x+b y+c z$ for three integers x, y, z.
