HW 5 (to be tested on Mar 8)

- 1. Prove that the gcd can be found using the Euclidean algorithm in the ring of Gaussian integers. Also prove the Bezout identity.
- 2. Prove that for any integral domain, primes are irreducibles. Prove that irreducibles are primes in the ring of Gaussian integers.
- 3. Prove that $\phi(ab) = \phi(a)\phi(b)$ where a and b are coprime. (Take a look at the exercises in Childs' book for a hint.)
- 4. Prove that the inverse of a ring isomorphism is a ring homomorphism.
- 5. Define a vector space $(V, 0 \in V, \mathbb{F}, +, .)$ over a field F as a set V with operations $+ : V \times V \to V$ and $. : \mathbb{F} \times V \to V$ satisfying (V, 0, +) is an Abelian group, and if $a, b \in \mathbb{F}, v \in V$, then a.(b.v) = (ab).v, (a + b).v = a.v + b.v, 1.v = v, and a.(v + w) = a.v + a.w. Define the linear independence of vectors v_1, \ldots, v_k as the non-existence of non-trivial $c_1, \ldots, c_k \in \mathbb{F}$ such that $\sum_i c_i v_i = 0$. Define a basis to be a set of linearly independent vectors such that every vector in the space is a linear combination of these. If a vector space has a finite basis, it is said to be finite-dimensional.
 - (a) Prove that if V is a finite-dimensional vector space over a field F, then every basis has the same cardinality.
 - (b) Prove that if \mathbb{F} is a finite-field of characteristic p, then it is a vector space over \mathbb{Z}_p .
 - (c) Conclude that any finite-field has size p^n where p is a prime.