HW 6 (to be tested on Mar 15)

1. Suppose R is a commutative ring. For a given fixed $a \in R$, define the map T_{a} : $R[x] \rightarrow R$ as $T_{a}(p(x))=p(a)$. This map is called the evaluation map. Prove that T_{a} is a homomorphism. What can go wrong if R is not commutative?
2. For every field F there exists a field \bar{F} which contains F as a subfield and is "algebraically closed", i.e., any polynomial $p(x)=a_{0}+a_{1} x+\ldots a_{n} x^{n}$ with coefficients $a_{i} \in \bar{F}$ has a root $u \in \bar{F}$. That is, $p(u)=0$.
(a) Prove that a polynomial $p(x)$ factors as $p(x)=a_{n}\left(x-u_{1}\right)\left(x-u_{2}\right) \ldots\left(x-u_{n}\right)$ where $u_{i} \in \bar{F}$.
(b) Define the derivative of $p(x)$ as $p^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots$ Prove that $p(x)$ has a repeated root if and only if $p(x)$ and $p^{\prime}(x)$ share a root.
(c) Let $u_{1}, u_{2}, \ldots, u_{p^{n}} \in \overline{\mathbb{Z}}_{p}$ be the roots of $x^{p^{n}}=x$. Prove that this finite set is a subfield $\mathbb{F}_{p^{n}}$ of $\overline{\mathbb{Z}}_{p}$. Show also that the elements u_{i} are distinct and hence the finite field has order p^{n}.
3. Prove that $f(x), g(x) \in \mathbb{F}[x]$ where \mathbb{F} is a field, then any common divisor of f, g divides any gcd of f, g produced by the Euclidean algorithm.
4. In $\mathbb{F}[x]$, every f factors uniquely (up to) units into a product of irreducible polynomials.
