HW 7 (to be tested on Mar 29)

1. Prove that every polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ where R is a commutative ring, can be uniquely written as a sum of homogeneous polynomials. Every symmetric polynomial can be be uniquely written as a sum of homogeneous symmetric polynomials.
2. Prove that the decomposition of a symmetric polynomial in terms of elementary symmetric ones is unique.
3. Assuming that rigid motions of \mathbb{R}^{2} preserving the origin are of the form $\vec{r} \rightarrow$ $[A] \vec{r}$ where $[A]$ is a matrix satisfying $[A]^{T}[A]=[A][A]^{T}=I$, prove that the group of rigid motions of a regular n-gon (with centre as the origin) is $D_{n}=$ $\left\{1, r, r^{2}, \ldots, r^{n-1}, s, r s, r^{2} s, \ldots, r^{n-1} s \mid r^{n}=s^{2}=1, r s=s r^{-1}\right\}$.
4. Let G be an Abelian group and let H consist of those elements of G having finite order. Prove that H is a subgroup.
5. Prove that \mathbb{Q} is not generated by a finite number of elements.
