HW 8 (to be tested on April 5)

1. Let $\alpha=\left(a_{1} \ldots a_{s}\right)$ and $\beta=\left(b_{1} \ldots b_{s}\right)$ be two cycles. Then prove that
(a) There exists a permutation σ such that $\sigma\left(a_{i}\right)=b_{i} \forall 1 \leq i \leq s$.
(b) If σ is any permutation such that $\sigma\left(a_{i}\right)=b_{i} \forall 1 \leq i \leq s$, then $\beta=\sigma \alpha \sigma^{-1}$.
2. Find a subgroup of S_{4} that contains 6 elements. How many such subgroups are there in S_{4} ?
3. Show that if $n \geq 4$ every element of S_{n} can be written as a product of two permutations each of which has order 2.
