
Notes for 10 Feb (Friday)

1 Compactness (cont’d)..

1. (HW 2) Imitate the proof of theorem 2.43 (in Rudin’s book) to obtain the following
result : If Rk = ∪∞1 Fn where each Fn is a closed subset of Rk, then at least one Fn
has a nonempty interior. (By the way, sets whose closure has empty interior are
called nowhere dense.)
Here is an equivalent statement (Why is this statement equivalent?) : If Gn are
dense open subsets of Rk then ∩∞1 Gn is not empty.

Ans. There are two ways of solving this problem :
First way : Suppose x1 ∈ G1. Then there is an r̃1 such that Br̃1(x1) ⊂ G1 because
G1 is open. By shrinking r̃1 to r1 we may assume that the closed ball B̄r1(x1) ⊂ G1.
Since G2 is dense, it means that every neighbourhood of every point intersects G2.
Therefore there exists x2 ∈ G2∩Br1(x1). Since G2∩Br1(x1) is open, like before there
exists B̄r2(x2) ⊂ G2 ∩Br1(x1). Inductively, we may construct xn and B̄rn(xn) such
that B̄rn(xn) ⊂ Brn−1(xn−1) ∩ G1 ∩ G2 ∩ G3 . . . ∩ Gn. Thus B̄rn(xn) are compact
sets such that every finite intersection is not empty. Therefore their intersectin
∩nB̄rn(xn) 6= φ which means there is some x in their intersection. I claim that
x ∈ Gn ∀ n. Indeed, x ∈ B̄rn(xn) ∩Gn.

Second way : Firstly, let’s prove that indeed the last statement is equivalent to the
original one.
Indeed, assume the last statement. Then if Fn are closed subsets of Rk such that
∪Fn = Rk, then F c

n are open subsets such that ∩F c
n = φ. But by the last statement,

this means that at least one F c
n is not dense. This means that there is a point

p ∈ Rk such that p is not in F c
n (so it is in Fn) and it is not a limit point of F c

n.
This means that there is a neighbourhood Br(p) such that no point of it is in F c

n.
This further means that Br ⊂ Fn. Thus p ∈ Br(p) ⊂ Fn. Therefore p ∈ Int(Fn)
which means that the interior is not empty.
Assume the original statement. If Gn are dense open subsets of Rk, and if ∩Gn is
empty, then we will derive a contradiction. Note that Fn = Gc

n are closed subsets
such that ∪Fn = Rk. Therefore there is one Fn having nonempty interior. This
means that there exists p and Br(p) such that p ∈ Br(p) ∈ Fn = Gc

n. This means
that p is NOT a limit point of Gn (and is certainly not in Gn). This means that
Gn is not dense. Contradiction.
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Secondly, let’s prove the original statement itself - Suppose not, i.e., Fn are closed
subsets whose union is Rk but every Fn has empty interior. Assume without loss
of generality that the sets Fi are all distinct. (If not, simply keep only the distinct
copies.)
Now choose a point x1 ∈ F1 and let V1 be a neighbourhood of x1. Assume without
loss of generality that all the Fi intersect this neighbourhood in distinct points.
(Otherwise just throw some of those Fi away because they do not matter for this
argument.) Since the interior of F1 is empty, there is a point x2 in V1 that is
not in F1. In fact, we can choose x2 to belong to F2. (If no such x2 exists, then
F2 ∩ V1 = F1 ∩ V1 and that is a problem by assumption.) Since F1 is closed, there
exists a neighbourhood V2 around x2 such that V̄2 ⊂ V1 and V̄2 ∩ F1 = φ. Now
continue this way to produce points xn ∈ Fn and neighbourhoods Vn around xn
such that V̄n ∩ Fn−1 = φ and V̄n ⊂ Vn−1. Now the V̄n are all compact sets (because
they are closed and bounded). Hence by a theorem in the class, ∩V̄n is not empty
and contains a point p. The problem is that p is in some Fk but that is not possible
because Fk ∩ V̄k+1 = φ.

2. Let K ⊂ R consist of 0 and the numbers 1
n
. Then prove that K is compact using

the definition.
Ans. Suppose Uα is an open cover of K. Since 0 ∈ Uβ for some β, and the Uβ is
open, of course (−ε, ε) ⊂ Uβ for some small ε. This means that along with 0 all but
finitely many 1

n
are in Uβ. The rest of the finitely many 1

n
that are not in Uβ are of

course in finitely many open sets Uα1 , Uα2 , . . . Uαk
. This proves it.

2 Connectedness

A set E is said to be connected iff E is NOT equal to (U1 ∩ E) ∪ (U2 ∩ E) where U1, U2

are open subsets of X and U1 ∩E ∩U2 ∩E = φ. In simpler terms, E is connected if it is
not a collection of two disjoint relatively open sets.
E ⊂ R is connected if and only if for every x < y, all z such that x < z < y are in E.

Here is a problem (that can be solved using connectedness but is easier to solve
otherwise) :
(HW 2) Prove that every open set in R1 is the union of an at most countable collection
of disjoint open intervals.
Ans. Take all the rationals qn in the open set E of R. Because E is open, (qn−εn, qn+εn) ⊂
E for some εn > 0. Let Mn = supt∈E(qn − ε, t) ⊂ E and mn = infs∈E(s, qn + ε) ⊂ E.
I claim that (mn,Mn) ⊂ E. Indeed, if x ∈ (mn,Mn) and x > qn then by definition of
supremum, there exists y ∈ E such that y > x and x ∈ (qn − ε, y) ⊂ E. Likewise if
x < qn. Also, E = ∪n(mn,Mn). Indeed, if x ∈ E then (x− ε, x + ε) ⊂ E. By density of
rationals, there is a rational qn ∈ (x−ε, x+ε) ⊂ E. Therefore, x ∈ (mn,Mn). I also claim
that if (mn,Mn) ∩ (mj,Mj) 6= φ then (mn,Mn) = (mj,Mj). Indeed if not, then either
mn < mj or mn > mj or Mn < Mj or Mn > Mj. Without loss of generality Mn < Mj

(the arguments are similar in the other cases). Then, note that (qn − εn,Mj) ⊂ E.
This is a contradiction to the assumption that Mn is the supremum of all t such that
(qn − εn, t) ⊂ E.
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3 Sequences

A sequence is simply an infinite (countable) list of elements of X, x1, x2, . . .. It converges
to x if for every ε > 0 there exists N > 0 such that d(xn, x) < ε ∀ n > N .
A subsequence is a subcollection of the infinite list xn1 , xn2 , . . . where n1 < n2 < n3.....
A subsequential limit is limk→∞ xnk

. A sequence converges to x if and only if all its
convergent subsequences converge to x.

Problem : A point p is a limit point of a sequence x1, x2, . . . if and only if there is a
subsequence xnk

→ p where all but finitely many terms of the subsequence are different
from p.
Ans) Indeed, suppose there is such a subsequence. This means that given any ε > 0 there
exists an N such that k > N → d(xnk

, p) < ε. This means that given any neighbourhood
Bε(p), there exists a point xnk

6= p in Bε(p). Therefore it is a limit point. Conversely, sup-
pose p is a limit point of the sequence. This means that for every neighbourhood B1/k(p)
there exists a point xnk

6= p ∈ B1/k(p). In addition, we may assume that nk > nk−1 > . . .
because if inductively, this is true for k−1 then since there are only finitely many l < nk−1
there exists some l = nk > nk−1. (Note that we proved that for a limit point of a set,
every neighbourhood actually consist of infinitely many points from the set.) Thus for
every ε > 0, choosing an integer N > 0 such that 1

N
< ε (by the Archimedian property)

the points xnk
for all k > N lie in B1/N(p) ⊂ Bε(p). Therefore by definition xnk

→ p.

A bounded sequence in Rn has a convergent subsequence. This is the content of the
Bolzano-Weierstrass theorem.

A Cauchy sequence xn is one where eventually all the terms are very close to one
another, i.e., given any ε > 0 there is an Nε > 0 such that n,m > Nε implies that
d(xn, xm) < ε. Please note that in Rn every Cauchy sequence converges. So in a problem
if I ask you to prove that a sequence in Rn (does not work for other metric spaces) con-
verges, one possible strategy is to prove that it is a Cauchy sequence.

Another useful point : To prove that a Cauchy sequence xn converges to x, it is
enough to find one subsequence that converges to x.

Fact : If a set K is compact then every sequence has a convergent subsequence whose
limit is in K.

For example, If you take the following sequences, what are all possible subsequences
and the subsequential limits?

1. 1,−1, 1,−1, 1, . . . : Either you have infinitely many 1 and −1 in your subsequence,
or finitely many 1 or finitely many −1. (So the subsequential limits are only 1 and
−1. The sequence itself does not converge.)

2. an = 1,−2, 3, 0, 1,−2, 3, 0, . . . : In any subsequence, either all but finitely many are
1 xor −2 xor 3 xor 0, or not. In the former case, the subsequence converges to
1,−2, 3 xor 0. In the latter case, the subsequence fails to converge.
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In the above examples, the limit of the sequence fails to exist but that of some subse-
quences does exist. For any real sequence, there are two kinds of subsequential limits
that always exist (if you allow ±∞ as valid limits). These are the lim sup and lim inf.
The lim sup is the supremum of all subsequential limits. In fact, it is the maximum of all
subsequential limits. (Likewise lim inf.) The lim sup and lim inf of the above examples
are:

1. lim sup is 1 and lim inf is −1.

2. lim sup is 3 and lim inf is −2.

The point is that if x > lim sup an then there is an N such that x > an∀n > N . Also,
there is a mechanical way to calculate lim sup and lim inf. You do not need to find out
all subsequential limits. The formulae are :
lim sup an = limN→∞ supn≥N an.
lim inf an = limN→∞ infn≥N an.

Why should you care about lim sup and lim inf ? How will you use them in problems
(that are not as straightforward as “Tell me the lim sup of this sequence”)? The main
points are that :

1. A sequence an → a if and only if lim sup an = lim inf an = a.

2. Also, lim inf an ≤ lim sup an always exist for any real sequence (if you allow ±∞).

3. If an ≤ bn then lim sup an ≤ lim sup bn and lim inf an ≤ lim inf bn.

For instance, (although series are not there in the syllabus) we used these facts to prove
that limn→∞(1 + 1/n)n = e.

Here are some problems :

1. If s1 =
√

2, and sn+1 =
√

2 +
√
sn then prove that sn converges and that sn < 2.

Ans. s1 < 2. Inductively assume that sn < 2. Then sn+1 <
√

2 +
√

2 <
√

4 < 2.
Thus the sequence is bounded. I also claim that 0 < sn < sn+1. For n = 1,√

2 +
√

2 >
√

2. Inductively assume that sn > sn−1, i.e.
√
sn >

√
sn−1. (This

is true because if not, just square on both sides to get a contradiction.). Indeed,
s2n+1−s2n >

√
sn−
√
sn−1 > 0 inductively. Thus sn+1−sn > 0 (because sn+1+sn > 0).

Since a monotone bounded sequence converges we are done.

2. Fix α > 1. Take x1 >
√
α. Define xn+1 = α+xn

1+xn
= xn + α−x2n

1+xn
. Prove that

(a) x1 > x3 > . . ..

(b) x2 < x4 < . . ..

(c) lim xn =
√
α.

4



Firstly, inductively all xn > 0. (Indeed this is true for n = 1. Assuming truth for
n, by the first equality defining xn+1 it is easily seen to be true for n+1.) We prove
a) and b) simultaneously. Indeed, note that

xk − xk−2 =
α + xk−1
1 + xk−1

− α + xk−3
1 + xk−3

=
(α− 1)(xk−3 − xk−1)
(1 + xk−1)(1 + xk−3)

(1)

Claim : x2n−1 > x2n+1 and x2n < x2n+2.
For n = 1 : x3 − x1 = α+x2

1+x2
− x1 = α+x2−x1−x1x2

1+x2
. Indeed,this simplifies to

(1 + x2)(x3 − x1) = α− x1 +
α + x1
1 + x1

(1− x1)

=
2(α− x21)

1 + x1
< 0. (2)

Putting k = 4 in 1 we see that x4 − x2 > 0 because α > 1 and x1 > x3.
Assuming truth for n, we will prove for n + 1. Indeed, putting k = 2n + 3 in
equation 1 we see that since xk−3 − xk−1 = x2n − x2n+2 < 0 and α − 1 > 0 we get
x2n+3−x2n+1 < 0. Also, putting k = 2n+4 in 1, since xk−3−xk−1 = x2n+1−x2n+3 >
0 we get x2n+4 > x2n+2 which is what we wanted.

We also claim that x2n <
√
α and x2n+1 >

√
α. Indeed, note that xk+1 −

√
α =

α+xk−
√
α−
√
αxk

1+xk
= (−xk+

√
α)(−1+

√
α)

1+xk
. Therefore the claim is true for n = 1 and induc-

tively for all n.

Thus the even subsequence is increasing and bounded. The odd subsequence is
decreasing and bounded. So both of them converge to something(s). Let’s say
limx2n+1 = x and lim x2n = y. Now

x2n+1 =
α + x2n
1 + x2n

x2n =
α + x2n−1
1 + x2n−1

.

Taking the limit as n→∞ on both sides of the equations above,

x =
α + y

1 + y

y =
α + x

1 + x

Solving for x and y we get x = y =
√
α.

We shall calculate lim sup and lim inf and prove that they are equal to
√
α. Indeed,

lim supxn = lim
N→∞

sup
n≥N

xn = lim
N→∞

bN
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where bN = xN if N is odd and bN = xN+1 if N is even. In either case, the sequence
bN is x1, x3, x3, x5, x5 . . . which converges to

√
α because it is monotonically increas-

ing and bounded above and has a subsequence that converges to
√
α. Likewise, we

can calculate the lim inf to be
√
α.
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