
Notes for 10 Mar (Friday)

1 Recap

1. Proved that if f has only finitely many discontinuities and α is continuous there,
then f is RS.

2. Proved that if α is continuous and f monotonic, then also f is RS.

3. If f is RS and g continuous, then g ◦ f is RS.

4. Proved the usual properties of integrals.

2 Properties of RS functions

Here is another property.

Lemma 2.1. If f and g are RS integrable then

1. So is fg.

2. |f | is so and |
∫
fdα| ≤

∫
|f |dα.

Proof. 1. The elegant idea is fg = (f+g)2−(f−g)2
4

. Since f , g are RS integrable so are
f + g and f − g. Since x2 is a continuous function, (f + g)2 and (f − g)2 are RS
integrable. Their difference (divided by 4) is also RS integrable.

2. φ(t) = |t| is continuous and hence |f | is RS integrable. Now let c = ±1 be chosen
so that c

∫
fdα ≥ 0. Therefore |

∫
fdα| = c

∫
fdα =

∫
cfdα ≤

∫
|f |dα because

cf ≤ |f |.

Let s(x) = 0 when x ≤ 0 and s(x) = 1 when x > 0. We naively expect s
′
(x) = δ(x)

(although the Dirac delta is not a function).

Theorem 1. If a < t < b, f is bounded on [a, b], α(x) = s(x − t), and f is continuous

at t then
∫ b
a
fdα = f(t).

Proof. Suppose P is any partition of [a, b] not containing t such that xi−1 ≤ t ≤ xi. Then
U(P, f, α) = Mi and L(P, f, α) = mi. Since f is continuous at t, there is a δ > 0 such
that |f(x)−f(t)| < ε/2 whenever |x−p| < δ. Choosing the partition such that xi− t < δ
we see that Mi ≤ f(t) + ε/2 and mi ≥ f(t)− ε/2. Thus U(P )− L(P ) < ε. Thus f is RS
integrable. Moreover, |

∫
fdα −

∑
f(vi)∆αi| < ε. Thus |

∫
fdα − f(t)| < ε for every ε.

Hence we are done.
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In fact, something stronger is true.

Theorem 2. Suppose cn ≥ 0,
∑
cn converges, tn is a sequence of distinct points in [a, b]

and α(x) =
∑∞

n=1 cns(x− tn). Let f be continuous. Then
∫ b
a
fdα =

∑
cnf(tn).

Proof. Firstly, the comparison test (along with the boundedness of f because of the
extreme value theorem) shows that the series on the right hand side converges. Actually
this also shows that α(x) is well-defined. It is easy to see that α is increasing.
Secondly, suppose N is so large that

∑∞
n=N+1 cn < ε. Then let α1(x) =

∑N
n=1 cnsn(x −

tn) and α2(x) =
∑∞

N+1 cnsn(x − tn). Definitely α1, α2 are well-defined. They are also
increasing. Because f is continuous, f is RS integrable w.r.t α, α1, and α2. Moreover,∫ b
a
fdα =

∫ b
a
fdα1 +

∫ b
a
fdα2. Thus∫ b

a

fdα =
N∑
n=1

∫
cnfdsn(t− xn) +

∫ b

a

fdα2 =
N∑
n=1

cnf(tn) +K(α2(b)− α2(a)). (1)

Let N →∞ to see that |
∫ b
a
fdα−

∑
cnf(tn)| ≤ K(α2(b)−α2(a)). But 0 < α2(b)−α2(a) <

ε. Thus tending ε→ 0 we get the result.

We can now connect the RS integral to the usual Riemann integral.

Theorem 3. Suppose α is increasing, and α
′

is Riemann integrable. Suppose f is a
bounded real function. Then f is RS w.r.t α if and only if fα

′
is Riemann integrable.

Moreover,
∫
fdα =

∫
fα
′
dx.

Proof. Since α
′

is integrable, there exists a partition P so that
∑
|α′(si)−α

′
(ti)|∆xi < ε

for any choices si, ti in [xi−1, xi].
By the MVT ∆αi = α

′
(ci)∆xi. Put M = sup |f(x)|. So

∑
f(si)∆αi =

∑
f(si)α

′
(ti)∆xi.

Thus |
∑
f(si)∆αi −

∑
f(si)α

′
(si)∆xi ≤Mε. Therefore

∑
f(si)∆αi ≤ U(P, fα

′
) +Mε.

Hence U(P, f, α) ≤ U(P, fα
′
, x) + Mε. Likewise, U(P, fα

′
) ≤ U(P, f, α) + Mε. This

leads us to conclude that |
∫ b̄

a

fdα−
∫ b̄

a

fα′dx| ≤ Mε. A similar argument for the lower

integrals shows the result.

There are (not-so-easy to describe) counterexamples that show that α just being dif-
ferentiable everywhere is not good enough for

∫
fdα =

∫
fα
′
dx.

The next order of business is change-of-variable of integration, i.e., the ability to
evaluate integrals by substitution.

Theorem 4. Suppose φ is strictly increasing and continuous that maps [A,B] onto [a, b].
Suppose α is increasing on [a, b] and f is RS w.r.t α. Let β(y) = α(φ(y)) and g(y) =

f(φ(y)). Then g is RS w.r.t β and
∫ B
A
gdβ =

∫ b
a
fdα.

Proof. Given a partition P = {x0 = a ≤ x1 ≤ . . . xn = b} we can get a partition
Q = {y0 = A, y1 = φ−1(x1) . . .. So if we choose a partition P such that

∑
(Mi −

mi)∆αi < ε, then the partition Q of [A,B] is such that sup
y∈[yi−1,yi]

g(y) = sup
y∈[yi−1,yi]

f(φ(y)) =

sup
x∈[xi−1,xi]

f(x) = Mi and likewise for mi. Moreover, ∆βi = β(yi) − β(yi−1) = α(xi) −
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α(xi−1) = ∆αi. Thus U(Q)−L(Q) < ε. Therefore
∫
gdβ exists. Also since U(Q) = U(P ),

U(Q) ≤
∫ b
a
fdα and so on. Likewise for the lower integral. Thus the integrals are

equal.

3 Fundamental theorems of calculus

Here is the theorem that states that if you differentiate an integral you get the function
back.

Theorem 5. Let f be Riemann integrable on [a, b]. Define F : [a, b] → R as F (x) =∫ x
a
f(t)dt. Then F is continuous. Moreover, if f is continuous at x0 ∈ (a, b) then F is

differentiable there and F
′
(x0) = f(x0).

Proof. Firstly, F (x) is well-defined because F (x) =
∫ b
a
f(t)g(t)dt where g(t) = 1−s(t−x)

and f , g are Riemann integrable. By the properties of Riemann integrals, if y ≤ x, then

|F (x) − F (y)| = |
∫ y

x

f(t)dt| ≤ M |y − x| < ε if |y − x| < ε
M

. So F is (uniformly)

continuous. Moreover, if f is continuous at x0, then

|F (x)− F (x0)

x− x0

− f(x0)| = |
∫ x
x0
f(t)dt

x− x0

− f(x0)|

= |
∫ x
x0

(f(t)− f(x0))dt

x− x0

| ≤ ε,

if |x− x0| < δ. Thus we are done.
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