Notes for 10 Mar (Friday)

1 Recap

1. Proved that if f has only finitely many discontinuities and « is continuous there,
then f is RS.

2. Proved that if « is continuous and f monotonic, then also f is RS.
3. If fis RS and ¢ continuous, then g o f is RS.

4. Proved the usual properties of integrals.

2 Properties of RS functions

Here is another property.
Lemma 2.1. If f and g are RS integrable then
1. So s fg.

2. f| is so and | [ fda| < [|flde.

Proof. 1. The elegant idea is fg = W. Since f, g are RS integrable so are
f+gand f—g. Since 2% is a continuous function, (f + g)? and (f — g)* are RS
integrable. Their difference (divided by 4) is also RS integrable.

2. ¢(t) = |t| is continuous and hence |f] is RS integrable. Now let ¢ = £1 be chosen
so that ¢ [ fda > 0. Therefore | [ fda| = ¢ [ fda = [cfda < [|f]da because

cf <|fl.
O

Let s(x) = 0 when < 0 and s(z) = 1 when 2 > 0. We naively expect s (z) = §(z)
(although the Dirac delta is not a function).

Theorem 1. Ifa <t <b, f is bounded on [a,b], a(z) = s(x —t), and f is continuous
at t then f: fda = f(t).

Proof. Suppose P is any partition of [a, b] not containing ¢ such that z;_; <t < ;. Then
U(P, f,a) = M; and L(P, f,a) = m;. Since f is continuous at ¢, there is a 6 > 0 such
that |f(z) — f(t)] < €/2 whenever |z —p| < §. Choosing the partition such that z; —¢ < §
we see that M; < f(t) +¢/2 and m; > f(t) —€/2. Thus U(P) — L(P) < e. Thus f is RS
integrable. Moreover, | [ fda — >~ f(v;)Aaq;| < e. Thus | [ fda — f(t)] < € for every e.
Hence we are done. []



In fact, something stronger is true.

Theorem 2. Suppose ¢, > 0, > ¢, converges, t, is a sequence of distinct points in |a, b|
and o(x) = > 07 cps(z —t,). Let f be continuous. Then fab fda=>"c,f(tn).

Proof. Firstly, the comparison test (along with the boundedness of f because of the
extreme value theorem) shows that the series on the right hand side converges. Actually
this also shows that a(x) is well-defined. It is easy to see that « is increasing.

Secondly, suppose N is so large that > > . ¢, < e. Then let a;(z) = SN ensa(T —
tn) and as(x) = D 3, Casn(z — t,). Definitely oy, as are well-defined. They are also
increasing. Because f is continuous, f is RS integrable w.r.t «, «y, and as. Moreover,

f;fda = fab fdoy + f; fdas. Thus
b N b N
/ fda = Z/cnfdsn(t — ) +/ fdag = chf(tn) + K(ay(b) — as(a)). (1)
a n=1 a n—1

Let N — oo to see that | fab fda=>"c, f(t,)] < K(ag(b)—az(a)). But 0 < as(b)—as(a) <
€. Thus tending € — 0 we get the result. O]

We can now connect the RS integral to the usual Riemann integral.

Theorem 3. Suppose « is increasing, and o is Riemann integrable. Suppose f is a
bounded real function. Then f is RS w.r.t o if and only if fo' is Riemann integrable.
Moreover, ffdoz:ffa'dx.

Proof. Since o is integrable, there exists a partition P so that >_ |o/(s;) — & (t;)| Az < €
for any choices s;, t; in [z;_1, 2]

By the MVT Aq; = o' (¢;)Az;. Put M = sup|f(z)]. So Y f(si)Aa; = > f(si)a' (t;) Ax;.
Thus | Y f(si)Aa; — > f(si)a' (s)Ax; < Me. Therefore Y f(s;)Aa; < U(P, fo') + Me.

Si
Hence U(P, f,a) < U(P, fa',z) + Me. Likewise, U(P, fa') < U(P, f,a) + Me. This
b b
leads us to conclude that | / fda — / fa'dz| < M.. A similar argument for the lower

integrals shows the result. ‘ O]

There are (not-so-easy to describe) counterexamples that show that a just being dif-
ferentiable everywhere is not good enough for [ fda = [ fa'dz.

The next order of business is change-of-variable of integration, i.e., the ability to
evaluate integrals by substitution.

Theorem 4. Suppose ¢ is strictly increasing and continuous that maps [A, B] onto [a, b].
Suppose « is increasing on [a,b] and f is RS w.r.t a. Let B(y) = a(o(y)) and g(y) =

f(d(y)). Then g is RS w.r.t 3 and ff gdf = fab fda.

Proof. Given a partition P = {xg = a < 27 < ...z, = b} we can get a partition
Q ={yo = Ay1 = ¢ '(z1).... So if we choose a partition P such that > (M; —

m;)Aa; < €, then the partition @ of [A, B] is such that sup ¢(y) = sup f(¢o(y)) =
YE[yi-1,y:] YE[yi—1,yi]
sup  f(x) = M, and likewise for m;. Moreover, AS; = B(y;) — B(yi—1) = a(x;) —

r€[Ti—1,24]



a(xi—1) = Aay. Thus U(Q)—L(Q) < e. Therefore [ gdf exists. Also since U(Q) = U(P),

UQ) < f; fda and so on. Likewise for the lower integral. Thus the integrals are
equal. O

3 Fundamental theorems of calculus

Here is the theorem that states that if you differentiate an integral you get the function
back.

Theorem 5. Let f be Riemann integrable on [a,b]. Define F : |a,b] — R as F(x) =
[ f(t)dt. Then F is continuous. Moreover, if f is continuous at xo € (a,b) then F is
differentiable there and F'(x0) = f(xq).

Proof. Firstly, F(x) is well-defined because F'(z) = fab f(t)g(t)dt where g(t) = 1—s(t—x)

and f, g are Riemann integrable. By the properties of Riemann integrals, if y < x, then
y

|F(z) — F(y)| = ]/ f)dt] < Mly — x| < eif [y —2[ < 7. So F is (uniformly)

xT
continuous. Moreover, if f is continuous at g, then

F(z) - F o f(t)at
T gy = Pl 08y
Sy (F(8) = f(wo))dt
= r—x =«
0
if | — x9| < §. Thus we are done. O
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