
Notes for 13th Jan (Friday)

1 Recap

1. We defined multiplication, ordering, negation, and reciprocals of reals and said that
you can prove all the usual properties in principle for these things.

2. We proved the supremum property of reals assuming the density of rationals and
the Archimedian property.

3. We proced that nth roots of positive reals exist and if required to be positive, are
unique.

2 Reals (cont’d)..

As a corollary of the existence and uniqueness of positive roots, a1/nb1/n = (ab)1/n because
of commutativity of multiplication and uniqueness of the nth root.

We haven’t yet proved the density of rationals and their Archimedian property ! Let’s
remedy that.

Lemma 2.1. If x < y ∈ R then there exists a rational p/q such that x < p/q < y.

Proof. Indeed, there exists a natural N so that xi < yi for all i > N (by definition).
Actually there exists an N so that yi − xi > u for some rational u > 0 for all i ≥ N .
(This is because y − x > 0 is the same thing as saying that yi ≥ xi and y − x 6= 0 which
is the same as saying that |yi − xi| ≥ ε for some ε > 0 for all sufficiently large i.)

Assume that Ñ is such a large natural number that |xi − xj| < u
4

and |yi − yj| < u
4

for all i, j ≥ Ñ . We claim that r = xÑ + u
2

lies between x and y. Indeed, r − xi =
u
2

+ xÑ − xi > u
2
− u

4
= u

4
> 0 and yi − r > yÑ − u

4
− xÑ − u

2
> u− 3u

4
= u

4
> 0.

The following one is about the Archimedian property.

Lemma 2.2. If x and y are two reals, and x > 0 then there exists a positive integer m
such that mx > y.

Proof. We only need to consider the case of 0 < x < y (Why?). By density of rationals,
there exists rationals r1, r2, r3 such that 0 < r1 < x < r2 < y < r3. The Archimedian
property holds for rationals. (Why?) Therefore r1N > r2 and r2M > r3. Therefore
NMx > NMr1 > Mr2 > r3 > y.
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We are used to writing real numbers in terms of their decimal expansion (certainly
not as Cauchy sequences of rationals). Here is the justification for the same.

Let x > 0 wLOG. If a0 is the largest natural ≤ x (Archimedian property), then
x − a0 ≥ 0. Applying the Archimedian property again, ∃a1 the largest natural number
such that x − a0 − a1

10
≥ 0. Likewise, we get a sequence of naturals a0, a1, . . . such that

x− a0− a1
10
− a2

100
. . . ≥ 0. The sequence of rationals sn =

∑n
i=0

ai
10i

is then bounded above
by x. The least above bound of the set (s0, . . .) is then x. Conversely, any infinite decimal
represents a Cauchy sequence of rationals and thus a real number. However, the map
is not 1-1. (Some reals have two decimal expansions like 0.999999... = 1. Prove as an
exercise that a real can have at most two decimal expansions.)

Cardinality of real numbers : Later on we will define tan(π
2
x) and prove its proper-

ties. In particular, we will show that it is a bijection from (−1, 1)→ R. (We will not use
the cardinality of reals anywhere after this. So the following argument is not circular.)
There is the obvious bijection f(x) = 2x− 1 from (0, 1)→ (−1, 1). We will calculate the
cardinality of (0, 1).

Firstly, here is Cantor’s original argument to show that Reals are not countable.
Indeed, if they are countable, i.e., one can enumerate reals in (0, 1) written using their
decimal expansions (with no trailing 9s) as

x1 = 0.x11x12x13 . . .

x2 = 0.x21x22x23 . . .

... (1)

Then create a new real number a = 0.a1a2 . . . where ai is any integer in [1, 8] not equal
to xii. This new number differs from every number on this list because if it differs from
xk in the kth digit. This is a contradiction. (Cantor’s diagonalisation.)

But this does not show that #R = #P(N). There is an injection from (0, 1) to
infinite sequences of natural numbers (which form a subset of P(N × N). So assuming
the continuum hypothesis we see that #R = #P(N). But we definitely do not need the
continuum hypothesis to prove this result. Indeed, the set of infinite binary sequences is
bijective to P(N) (either choose a number to be in your subset or not). Now, consider an
infinite sequence 0.a1a2.... formed out of 0 and 1. This represents the base 3 expansion of
a real number. It is 1− 1. Therefore, by the Schroeder-Bernstein theorem we are done.

3 Complex numbers

I will not do these in detail. (Largely because this course is not about complex numbers.)
The field of complex numbers C is defined to be R2 endowed with the following

addition and multiplication rules :

1. The 0 (additive identity) complex number is defined as (0, 0).
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2. The 1 (multiplicative identity) complex number is defined as (1, 0).

3. Addition : (a, b) + (c, d) = (a+ b, c+ d).

4. Multiplication : (a, b)(c, d) = (ac− bd, ad+ bc).

5. Negation : −(a, b) = (−a,−b).

6. Reciprocal : If (a, b) 6= (0, 0) then (a, b)−1 = ( a
a2+b2

, −b
a2+b2

)

Of course, usually one writes i or
√
−1 as (0, 1). So every complex number z = a + ib.

One defines the conjugate z̄ = a − ib for convenience. Also, the length of a complex
number |z| =

√
x2 + y2. Hence |z|2 = zz̄. Moreover, one has the triangle inequality

||z1| − |z2|| ≤ |z1 + z2| ≤ |z1|+ |z2|. The rest of it as they say is history.
Lastly, every polynomial whose coefficients are complex numbers has a root in complex

numbers. This is the fundamental theorem of algebra. Its proof is quite non-trivial.
The complex field cannot be made into an ordered field.

4 Euclidean space

Before we delve into this, let’s have some fun. In school most of us would’ve seen things
like 32 + 42 = 52 and 52 + 122 = 132, i.e., examples of Pythagorean triplets. Can one
come up with a general formula for producing all integers (a, b, c) satisfying a2 + b2 = c2

?
The question is equivalent to finding all rationals (x, y) such that x2 + y2 = 1. This

looks tantalising. So we want to find all rational points on the unit circle. Clearly any ra-
tional point can be connected to (1, 0) by a unique line of a rational slope m. Conversely,
suppose you take y = m(x − 1) such that x2 + y2 = 1 then you can see that x = m2−1

m2+1

and y = −2m
m2+1

. So we have found a general formula for a problem of number theory using
geometry. Now someone could ask you a question like “Find all numbers (a,b,c,d,e) such
that e2 = a2 + b2 + c2 + d2” and so on. To answer these questions (and many questions
from real life that depend on more than one quantity), we need to study the geometry of
Rn (defined recursively as the Cartesian product of Rn−1 and R).
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