Notes for 15 Mar (Wednesday)

1 Recap

1. We proved that if f, g are RS then so are $f g$ and $|f|$.
2. We proved the intuitively clear statement that if f is continuous, $\alpha=\sum c_{n} s\left(x-t_{n}\right)$ where $\sum c_{n}$ converges $\left(c_{n} \geq 0\right)$ then $\int f d \alpha=\sum c_{n} f\left(t_{n}\right)$.
3. We connected RS to Riemann integrals in the case when α^{\prime} is Riemann integrable.
4. We proved the change of variables theorem.
5. We proved that if f is continuous at a point then the derivative of the integral of f equals f at that point.

2 Fundamental theorems of calculus

In the second one if you prove that antiderivatives can be used to calculate integrals.
Theorem 1. If f is Riemann integrable and if there is a differentiable F such that $F^{\prime}=f$ then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.

Proof. Choose a partition P such that $U(P, f)-L(P, f)<\epsilon$. By the MVT, $F\left(x_{i}\right)-$ $F\left(x_{i-1}\right)=f\left(t_{i}\right) \Delta x_{i}$. Note that $\left|\sum f\left(t_{i}\right) \Delta x_{i}-\int_{a}^{b} f(x) d x\right|<\epsilon$ and hence $F(b)-F(a)=$ $\int_{a}^{b} f(x) d x$.

Finally, we have the integration-by-parts formula for differentiable functions F and G such that $F^{\prime}=f$ and $G^{\prime}=g$ are Riemann integrable. Actually, we also have the following integration-by-parts formula for the RS integral.

Theorem 2. If f and α are monotonically increasing such that f is $R S$ w.r.t α then $\int_{a}^{b} f d \alpha=f(b) \alpha(b)-f(a) \alpha(a)-\int_{a}^{b} \alpha d f$.

Proof. Note that $U(P, f, \alpha)-L(P, f, \alpha)=\sum\left(M_{i}-m_{i}\right) \Delta \alpha_{i}=\Delta f_{i} \Delta \alpha_{i}$. Since this is symmetric, and f is RS w.r.t α, so is α RS w.r.t f. Now $U(P, f, \alpha)+L(P, \alpha, f)=$ $\sum f\left(x_{i}\right)\left(\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)\right)+\alpha\left(x_{i-1}\right)\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)=f(b) \alpha(b)-f(a) \alpha(a)$. Since there exists a partition P (after taking a common refinement if necessary) such that $\int f d \alpha<$ $U(P, f, \alpha)<\int f d \alpha+\epsilon$ and $\int \alpha d f-\epsilon<L(P, \alpha, f)<\int \alpha d f$, we see that since ϵ is arbitrary, we are done.

3 Integration of vector-valued functions

If $\vec{f}:[a, b] \rightarrow \mathbb{R}^{n}$ is a vector-valued bounded function, and $\alpha:[a, b] \rightarrow \mathbb{R}$ is montonically increasing, then we define $\int_{a}^{b} \vec{f} d \alpha=\left(\int_{a}^{b} f_{1} d \alpha, \ldots\right)$. The usual properties of integrals are valid (by just applying these results to each of the components). For instance, if $\vec{F}^{\prime}=\vec{f}$ then $\int_{a}^{b} \vec{f} d t=\vec{F}(b)-\vec{F}(a)$. However, there is one theorem whose proof is slightly non-trivial.

Theorem 3. If \vec{f} maps $[a, b]$ into \mathbb{R}^{n} and if \vec{f} is $R S$ integrable, then $\|\vec{f}\|$ is $R S$ integrable and $\left\|\int_{a}^{b} \vec{f} d \alpha\right\| \leq \int_{a}^{b}\|\vec{f}\| d \alpha$.
Proof. Firstly note that f_{i}^{2} are RS integrable because x^{2} is continuous and f_{i} are RS. Then note that $\|\vec{f}\|^{2}=\sum f_{i}^{2}$ is RS. Now I claim that the square root function is continuous and hence $\|\vec{f}\|$ is RS. Indeed the sequare root function $\sqrt{x}:[a, b] \rightarrow[A, B]$ is the inverse of the square function $x^{2}:[A, B] \rightarrow[a, b]$ which is a continuous bijection from a compact set to another set. Therefore its inverse is continuous.

Note that $\left|\int_{a}^{b} \vec{f} \cdot \vec{g} d \alpha\right| \leq \int_{a}^{b}\|\vec{f}\|\|\vec{g}\| d \alpha$. Taking \vec{g} to be the constant function $\vec{g}=$ $\int_{a}^{b} \vec{f} d \alpha$ we are done.

4 Rectifiable curves

A curve γ in \mathbb{R}^{k} is simply a continuous map of an interval $[a, b]$ to \mathbb{R}^{k}. If γ is $1-1$ it is called an arc. If $\gamma(a)=\gamma(b)$ it is called a closed curve. (If $\gamma(x) \neq \gamma(y)$ except for the endpoints, then it is called a simple closed curve.) Note that a curve is a map. So $\gamma_{1}:[0,1] \rightarrow \mathbb{R}^{2}$ defined by $\gamma_{1}(t)=(t, t)$ and $\gamma_{2} ;[0,2] \rightarrow \mathbb{R}^{2}$ defined by $\gamma_{2}(t)=\left(\frac{t}{2}, \frac{t}{2}\right)$ are different curves having the same range.
Our aim is to define the length of a curve. Naively we might want to say that the length is $\int\left\|\gamma^{\prime}\right\| d t$. But what is γ is not differentiable everywhere? So we need a more general definition for the length of a curve.
Given a partition P of $[a, b]$ we define the number $\Lambda(P, \gamma)=\sum_{i=1}^{n}\left\|\Delta_{i} \gamma\right\|$ where $\Delta_{i} \gamma=$ $\gamma\left(x_{i}\right)-\gamma\left(x_{i-1}\right)$. The length of γ is defined as $L(\gamma)=\sup _{P} \Lambda(P, \gamma)$. This supremum exists in the extended real number system. If $L(\gamma)<\infty$ then the curve is said to be rectifiable. In some cases, this is given by a Riemann integral. In particular, this is the case if γ has continuous derivatives. (These functions are called C^{1} sometimes.)

Theorem 4. If γ^{\prime} is continuous on $[a, b]$ then γ is rectifiable and $L(\gamma)=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t$.
Proof. Let M be such that $\left\|\gamma^{\prime}\right\| \leq M$ on $[a, b]$. M exists because γ^{\prime} is continuous. Thus by the MVT $\left\|\Delta \gamma_{i}\right\| \leq M(b-a)$. This means that $L(\gamma)<\infty$. Thus the curve is rectifiable.

Each γ_{i}^{\prime} is continuous on a compact set $[a, b]$ and is thus uniformly continuous. So given a $\delta>0$ there exists an N_{i} such that $|t-s|<\frac{b-a}{N_{i}}$ implies that $\left|\left(\gamma^{\prime}\right)^{2}\left(t_{i}\right)-\left(\gamma^{\prime}\right)^{2}\left(s_{i}\right)\right|<\delta$. Choose $N>\max \left(N_{i}\right)$ for all i. Assume that the partition P is $x_{0}=a \leq x_{1}=a+\frac{b-a}{N} \ldots$. Also, choose δ so that $\sqrt{x}-\sqrt{x_{0}}<\epsilon$ whenever $\left|x-x_{0}\right|<\delta k$.
By the usual MVT, for each γ_{i} there exists a $c_{i, j}$ in $\left[x_{j-i}, x_{j}\right]$ s.t. $\Delta \gamma_{i}=\gamma^{\prime}\left(c_{i, j}\right) \Delta t_{i}$. Therefore $\Lambda(P, \gamma)=\sum_{j}\left\|\Delta_{j} \gamma\right\|=\sum_{j} \sqrt{\sum_{i} \gamma^{\prime}\left(c_{i, j}\right)^{2}} \frac{b-a}{N}$. Let $v_{j}=\frac{x_{j-1}+x_{j}}{2}$. Thus $\left|\Lambda(P, \gamma)-\sum_{j}\left\|\gamma^{\prime}\left(v_{j}\right)\right\| \frac{b-a}{N}\right|<\epsilon(b-a)$. As $N \rightarrow \infty$, we see that $\sum\left\|\gamma^{\prime}\left(v_{j}\right)\right\| \frac{b-a}{N} \rightarrow$ $\int_{a}^{b}\left\|\gamma^{\prime}\right\| d t$. Thus make $N \rightarrow \infty$ and then $\epsilon \rightarrow 0$ to be done.

Here is a famous example of a non-rectifiable curve. I will not discuss it rigorously though. This is the Koch snowflake curve :
Take an equilateral triangle of side 1. Trisect each of its sides, remove the middle pieces, and instead replace it with two sides of an equilateral triangle of side $1 / 3$. Continue this process. So each time, the perimeter P_{n} of the resulting curve C_{n} is $4 / 3$ of that of C_{n-1}. Thus the perimeter runs off to infinity. The "limit" (in some appropriate sense) of C_{n} is the so-called Koch snowflake curve. It is clearly not rectifiable. For fun, let's calculate the area of the Koch snowflake curve. Note that to A_{n-1} we add the area of an equilateral triangle for every line segment. Suppose the number of line segments after $n-1$ iterations is k_{n-1}. Then $k_{n}=4 k_{n-1}$ with $k_{0}=3$. Thus $k_{n}=4^{n} 3$. The number of new triangles after n iterations is K_{n-1}. The length of every segment after n iterations is $\frac{1}{3^{n}}$. Thus $A_{n}=A_{n-1}+4^{n-1} \times 3 \times \frac{3}{4} \frac{1}{9^{n}}$. Therefore $A=\frac{\sqrt{3}}{4} \frac{8}{5}$. So the area is finite but the perimeter is infinite!

