
Notes for 15 Mar (Wednesday)

1 Recap

1. We proved that if f, g are RS then so are fg and |f |.

2. We proved the intuitively clear statement that if f is continuous, α =
∑
cns(x− tn)

where
∑
cn converges (cn ≥ 0) then

∫
fdα =

∑
cnf(tn).

3. We connected RS to Riemann integrals in the case when α
′

is Riemann integrable.

4. We proved the change of variables theorem.

5. We proved that if f is continuous at a point then the derivative of the integral of f
equals f at that point.

2 Fundamental theorems of calculus

In the second one if you prove that antiderivatives can be used to calculate integrals.

Theorem 1. If f is Riemann integrable and if there is a differentiable F such that F
′
= f

then
∫ b

a
f(x)dx = F (b)− F (a).

Proof. Choose a partition P such that U(P, f) − L(P, f) < ε. By the MVT, F (xi) −

F (xi−1) = f(ti)∆xi. Note that |
∑
f(ti)∆xi −

∫ b

a

f(x)dx| < ε and hence F (b)− F (a) =∫ b

a
f(x)dx.

Finally, we have the integration-by-parts formula for differentiable functions F and
G such that F

′
= f and G

′
= g are Riemann integrable. Actually, we also have the

following integration-by-parts formula for the RS integral.

Theorem 2. If f and α are monotonically increasing such that f is RS w.r.t α then∫ b

a
fdα = f(b)α(b)− f(a)α(a)−

∫ b

a
αdf .

Proof. Note that U(P, f, α) − L(P, f, α) =
∑

(Mi − mi)∆αi = ∆fi∆αi. Since this is
symmetric, and f is RS w.r.t α, so is α RS w.r.t f . Now U(P, f, α) + L(P, α, f) =∑
f(xi)(α(xi)− α(xi−1)) + α(xi−1)(f(xi)− f(xi−1)) = f(b)α(b)− f(a)α(a). Since there

exists a partition P (after taking a common refinement if necessary) such that
∫
fdα <

U(P, f, α) <
∫
fdα+ε and

∫
αdf−ε < L(P, α, f) <

∫
αdf , we see that since ε is arbitrary,

we are done.

1



3 Integration of vector-valued functions

If ~f : [a, b]→ Rn is a vector-valued bounded function, and α : [a, b]→ R is montonically

increasing, then we define

∫ b

a

~fdα = (

∫ b

a

f1dα, . . .). The usual properties of integrals

are valid (by just applying these results to each of the components). For instance, if

~F
′

= ~f then

∫ b

a

~fdt = ~F (b) − ~F (a). However, there is one theorem whose proof is

slightly non-trivial.

Theorem 3. If ~f maps [a, b] into Rn and if ~f is RS integrable, then ‖~f‖ is RS integrable

and ‖
∫ b

a

~fdα‖ ≤
∫ b

a

‖~f‖dα.

Proof. Firstly note that f 2
i are RS integrable because x2 is continuous and fi are RS. Then

note that ‖~f‖2 =
∑
f 2
i is RS. Now I claim that the square root function is continuous

and hence ‖~f‖ is RS. Indeed the sequare root function
√
x : [a, b]→ [A,B] is the inverse

of the square function x2 : [A,B]→ [a, b] which is a continuous bijection from a compact
set to another set. Therefore its inverse is continuous.

Note that |
∫ b

a

~f.~gdα| ≤
∫ b

a

‖~f‖‖~g‖dα. Taking ~g to be the constant function ~g =∫ b

a

~fdα we are done.

4 Rectifiable curves

A curve γ in Rk is simply a continuous map of an interval [a, b] to Rk. If γ is 1-1 it
is called an arc. If γ(a) = γ(b) it is called a closed curve. (If γ(x) 6= γ(y) except for
the endpoints, then it is called a simple closed curve.) Note that a curve is a map. So
γ1 : [0, 1] → R2 defined by γ1(t) = (t, t) and γ2; [0, 2] → R2 defined by γ2(t) = ( t

2
, t
2
) are

different curves having the same range.
Our aim is to define the length of a curve. Naively we might want to say that the length
is
∫
‖γ′‖dt. But what is γ is not differentiable everywhere ? So we need a more general

definition for the length of a curve.

Given a partition P of [a, b] we define the number Λ(P, γ) =
n∑

i=1

‖∆iγ‖ where ∆iγ =

γ(xi)−γ(xi−1). The length of γ is defined as L(γ) = supP Λ(P, γ). This supremum exists
in the extended real number system. If L(γ) <∞ then the curve is said to be rectifiable.
In some cases, this is given by a Riemann integral. In particular, this is the case if γ has
continuous derivatives. (These functions are called C1 sometimes.)

Theorem 4. If γ
′

is continuous on [a, b] then γ is rectifiable and L(γ) =

∫ b

a

‖γ′(t)‖dt.

Proof. Let M be such that ‖γ′‖ ≤ M on [a, b]. M exists because γ
′

is continuous. Thus
by the MVT ‖∆γi‖ ≤M(b−a). This means that L(γ) <∞. Thus the curve is rectifiable.
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Each γ
′
i is continuous on a compact set [a, b] and is thus uniformly continuous. So given

a δ > 0 there exists an Ni such that |t− s| < b−a
Ni

implies that |(γ′)2(ti)− (γ
′
)2(si)| < δ.

Choose N > max(Ni) for all i. Assume that the partition P is x0 = a ≤ x1 = a+ b−a
N
. . ..

Also, choose δ so that
√
x−√x0 < ε whenever |x− x0| < δk.

By the usual MVT, for each γi there exists a ci,j in [xj−i, xj] s.t. ∆γi = γ
′
(ci,j)∆ti.

Therefore Λ(P, γ) =
∑
j

‖∆jγ‖ =
∑
j

√∑
i

γ′(ci,j)2
b− a
N

. Let vj =
xj−1+xj

2
. Thus

|Λ(P, γ) −
∑
j

‖γ′(vj)‖
b− a
N
| < ε(b − a). As N → ∞, we see that

∑
‖γ′(vj)‖ b−aN

→∫ b

a

‖γ′‖dt. Thus make N →∞ and then ε→ 0 to be done.

Here is a famous example of a non-rectifiable curve. I will not discuss it rigorously
though. This is the Koch snowflake curve :
Take an equilateral triangle of side 1. Trisect each of its sides, remove the middle pieces,
and instead replace it with two sides of an equilateral triangle of side 1/3. Continue
this process. So each time, the perimeter Pn of the resulting curve Cn is 4/3 of that of
Cn−1. Thus the perimeter runs off to infinity. The “limit” (in some appropriate sense)
of Cn is the so-called Koch snowflake curve. It is clearly not rectifiable. For fun, let’s
calculate the area of the Koch snowflake curve. Note that to An−1 we add the area of
an equilateral triangle for every line segment. Suppose the number of line segments after
n − 1 iterations is kn−1. Then kn = 4kn−1 with k0 = 3. Thus kn = 4n3. The number of
new triangles after n iterations is Kn−1. The length of every segment after n iterations

is 1
3n

. Thus An = An−1 + 4n−1 × 3 × 3
4

1
9n

. Therefore A =
√
3
4

8
5
. So the area is finite but

the perimeter is infinite!
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