Notes for 15 Mar (Wednesday)

1 Recap

1. We proved that if f,g are RS then so are fg and | f|.

2. We proved the intuitively clear statement that if f is continuous, o = > ¢, s(x —1,,)
where Y ¢, converges (¢, > 0) then [ fda =3 ¢, f(t,).

3. We connected RS to Riemann integrals in the case when ' is Riemann integrable.
4. We proved the change of variables theorem.

5. We proved that if f is continuous at a point then the derivative of the integral of f
equals f at that point.

2 Fundamental theorems of calculus

In the second one if you prove that antiderivatives can be used to calculate integrals.

Theorem 1. If f is Riemann integrable and if there is a differentiable F such that F' = f
then [ f(z)dx = F(b) — F(a).

Proof. Choose a partition P such that U(P, f) — L(P, f) < e. By the MVT, F(z;) —
b
F(z;—1) = f(t;)Ax;. Note that | > f(t;)Ax; — / f(z)dz| < € and hence F(b) — F(a) =

a

fab f(z)dx. O

Finally, we have the integration-by-parts formula for differentiable functions F' and
G such that F' = f and G' = ¢ are Riemann integrable. Actually, we also have the
following integration-by-parts formula for the RS integral.

Theorem 2. If f and o are monotonically increasing such that f is RS w.r.t a then

2 fda = f(b)a(b) — fla)a(a) — [7 adf.

Proof. Note that U(P, f,a) — L(P, f,a) = > (M; — m;)Aa; = Af;Acy. Since this is
symmetric, and f is RS w.r.t «, so is @« RS wr.t f. Now U(P, f,a) + L(P,«, f) =
> flai)(alzi) — alzia)) + alzia)(f(2:) — f(zi1)) = f(b)a(b) — f(a)a(a). Since there
exists a partition P (after taking a common refinement if necessary) such that [ fda <
U(P, f,a) < [ fda+eand [adf —e < L(P, o, ) < [ adf, we see that since e is arbitrary,
we are done. O



3 Integration of vector-valued functions

If f: [a,b] — R™ is a vector-valued bounded function, and « : [a,b] — R is montonically
b

b
increasing, then we define / fda = (| fida,...). The usual properties of integrals

a a
are valid (by just applying these results to each of the components). For instance, if

— f then / fdt = F(b) — F(a). However, there is one theorem whose proof is
slightly non-trivial.

Theorem 3. If maps a,b] into R™ and if f is RS integrable, then HfH is RS integrable

and | / Fial| < / 1 Fldo

Proof. Firstly note that f? are RS integrable because x
note that || f]|2 = 3 f2 is RS. Now I claim that the square root function is continuous
and hence || f]| is RS. Indeed the sequare root function v/z : [a,b] — [A, B] is the inverse
of the square function x? : [A, B] — [a, b] which is a continuous bijection from a compact
set to another set, Therefore itsb inverse is continuous.

Note that |/ f.gda| < / I fIl7llde. Taking § to be the constant function § =

2 is continuous and f; are RS. Then

b
/ fda we are done. n

4 Rectifiable curves

A curve v in R* is simply a continuous map of an interval [a,b] to R*. If v is 1-1 it
is called an arc. If y(a) = v(b) it is called a closed curve. (If y(z) # ~(y) except for
the endpoints, then it is called a simple closed curve.) Note that a curve is a map. So
Y : [0,1] = R? defined by 71 (t) = (t,t) and 72;[0,2] — R? defined by 1,(t) = (5, 5) are
different curves having the same range.

Our aim is to define the length of a curve. Naively we might want to say that the length
is [|7']|dt. But what is 7 is not differentiable everywhere ? So we need a more general
definition for the length of a curve.

Given a partition P of [a,b] we define the number A(P, Z I|A;v|| where Ay =

v(z;) —y(z;_1). The length of « is defined as L(~y) = supp A(P, ) Thls supremum exists
in the extended real number system. If L(y) < oo then the curve is said to be rectifiable.
In some cases, this is given by a Riemann integral. In particular, this is the case if v has
continuous derivatives. (These functions are called C' sometimes.)

Theorem 4. If v is continuous on [a,b] then ~y is rectifiable and L(vy / 17 ()| dt.

Proof. Let M be such that ||7'|| < M on [a,b]. M exists because v is continuous. Thus
by the MVT [|Av;|| < M (b—a). This means that L(7y) < co. Thus the curve is rectifiable.



Each ~; is continuous on a compact set [a,b] and is thus uniformly continuous. So given
a d > 0 there exists an N; such that |t — s| < b]\_[—:’ implies that |(v)2(t;) — (v )*(s:)] < 4.
Choose N > maxz(NV;) for all i. Assume that the partition P is 2o =a < z; = a+ 52 .. ..
Also, choose ¢ so that \/z — /g < € whenever |z — xo| < Ok.

By the usual MVT, for each ; there exists a ¢;; in [z;_;, 2] s.t. Ay, = vl(ci,j)Ati.

b— . .
Therctore AP7) = YA = 3 St Let vy = 555 Thus
J J (

’ b— a ’ —a
APy =)y (Wll—=| < e(b—a). As N — oo, we see that 3|17 (v))%* =
J

b
/ |7 [|dt. Thus make N — oo and then e — 0 to be done. O

Here is a famous example of a non-rectifiable curve. I will not discuss it rigorously
though. This is the Koch snowflake curve :
Take an equilateral triangle of side 1. Trisect each of its sides, remove the middle pieces,
and instead replace it with two sides of an equilateral triangle of side 1/3. Continue
this process. So each time, the perimeter P, of the resulting curve C,, is 4/3 of that of
Cy—1. Thus the perimeter runs off to infinity. The “limit” (in some appropriate sense)
of C, is the so-called Koch snowflake curve. It is clearly not rectifiable. For fun, let’s
calculate the area of the Koch snowflake curve. Note that to A,_; we add the area of
an equilateral triangle for every line segment. Suppose the number of line segments after
n — 1 iterations is k,,_;. Then k,, = 4k,,_, with ky = 3. Thus k,, = 4"3. The number of
new triangles after n iterations is K, ;. The length of every segment after n iterations
is 3% Thus A, = A,,_1 +4" 1 x 3 x %9%. Therefore A = ‘/ng. So the area is finite but
the perimeter is infinite!
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