Notes for 15 Mar (Wednesday)

1 Recap

- 1. We proved that if f, g are RS then so are fg and |f|.
- 2. We proved the intuitively clear statement that if f is continuous, $\alpha = \sum c_n s(x-t_n)$ where $\sum c_n$ converges $(c_n \ge 0)$ then $\int f d\alpha = \sum c_n f(t_n)$.
- 3. We connected RS to Riemann integrals in the case when α' is Riemann integrable.
- 4. We proved the change of variables theorem.
- 5. We proved that if f is continuous at a point then the derivative of the integral of f equals f at that point.

2 Fundamental theorems of calculus

In the second one if you prove that antiderivatives can be used to calculate integrals.

Theorem 1. If f is Riemann integrable and if there is a differentiable F such that F' = f then $\int_a^b f(x)dx = F(b) - F(a)$.

Proof. Choose a partition P such that $U(P, f) - L(P, f) < \epsilon$. By the MVT, $F(x_i) - F(x_{i-1}) = f(t_i)\Delta x_i$. Note that $|\sum f(t_i)\Delta x_i - \int_a^b f(x)dx| < \epsilon$ and hence $F(b) - F(a) = \int_a^b f(x)dx$.

Finally, we have the integration-by-parts formula for differentiable functions F and G such that F' = f and G' = g are Riemann integrable. Actually, we also have the following integration-by-parts formula for the RS integral.

Theorem 2. If f and α are monotonically increasing such that f is RS w.r.t α then $\int_a^b f d\alpha = f(b)\alpha(b) - f(a)\alpha(a) - \int_a^b \alpha df$.

Proof. Note that $U(P, f, \alpha) - L(P, f, \alpha) = \sum (M_i - m_i)\Delta\alpha_i = \Delta f_i\Delta\alpha_i$. Since this is symmetric, and f is RS w.r.t α , so is α RS w.r.t f. Now $U(P, f, \alpha) + L(P, \alpha, f) = \sum f(x_i)(\alpha(x_i) - \alpha(x_{i-1})) + \alpha(x_{i-1})(f(x_i) - f(x_{i-1})) = f(b)\alpha(b) - f(a)\alpha(a)$. Since there exists a partition P (after taking a common refinement if necessary) such that $\int f d\alpha < U(P, f, \alpha) < \int f d\alpha + \epsilon$ and $\int \alpha df - \epsilon < L(P, \alpha, f) < \int \alpha df$, we see that since ϵ is arbitrary, we are done.

3 Integration of vector-valued functions

If $\vec{f}:[a,b] \to \mathbb{R}^n$ is a vector-valued bounded function, and $\alpha:[a,b] \to \mathbb{R}$ is montonically increasing, then we define $\int_a^b \vec{f} d\alpha = (\int_a^b f_1 d\alpha, \ldots)$. The usual properties of integrals are valid (by just applying these results to each of the components). For instance, if $\vec{F}' = \vec{f}$ then $\int_a^b \vec{f} dt = \vec{F}(b) - \vec{F}(a)$. However, there is one theorem whose proof is slightly non-trivial.

Theorem 3. If \vec{f} maps [a, b] into \mathbb{R}^n and if \vec{f} is RS integrable, then $\|\vec{f}\|$ is RS integrable and $\|\int_a^b \vec{f} d\alpha\| \leq \int_a^b \|\vec{f}\| d\alpha$.

Proof. Firstly note that f_i^2 are RS integrable because x^2 is continuous and f_i are RS. Then note that $\|\vec{f}\|^2 = \sum f_i^2$ is RS. Now I claim that the square root function is continuous and hence $\|\vec{f}\|$ is RS. Indeed the sequare root function $\sqrt{x} : [a, b] \to [A, B]$ is the inverse of the square function $x^2 : [A, B] \to [a, b]$ which is a continuous bijection from a compact set to another set. Therefore its inverse is continuous.

set to another set. Therefore its inverse is continuous. Note that $|\int_a^b \vec{f}.\vec{g}d\alpha| \leq \int_a^b ||\vec{f}|| ||\vec{g}|| d\alpha$. Taking \vec{g} to be the constant function $\vec{g} = \int_a^b \vec{f}d\alpha$ we are done.

4 Rectifiable curves

A curve γ in \mathbb{R}^k is simply a continuous map of an interval [a, b] to \mathbb{R}^k . If γ is 1-1 it is called an arc. If $\gamma(a) = \gamma(b)$ it is called a closed curve. (If $\gamma(x) \neq \gamma(y)$ except for the endpoints, then it is called a simple closed curve.) Note that a curve is a map. So $\gamma_1: [0,1] \to \mathbb{R}^2$ defined by $\gamma_1(t) = (t,t)$ and $\gamma_2; [0,2] \to \mathbb{R}^2$ defined by $\gamma_2(t) = (\frac{t}{2}, \frac{t}{2})$ are different curves having the same range.

Our aim is to define the length of a curve. Naively we might want to say that the length is $\int ||\gamma'|| dt$. But what is γ is not differentiable everywhere? So we need a more general definition for the length of a curve.

Given a partition P of [a, b] we define the number $\Lambda(P, \gamma) = \sum_{i=1}^{n} \|\Delta_i \gamma\|$ where $\Delta_i \gamma =$

 $\gamma(x_i) - \gamma(x_{i-1})$. The length of γ is defined as $L(\gamma) = \sup_P \Lambda(P, \gamma)$. This supremum exists in the extended real number system. If $L(\gamma) < \infty$ then the curve is said to be rectifiable. In some cases, this is given by a Riemann integral. In particular, this is the case if γ has continuous derivatives. (These functions are called C^1 sometimes.)

Theorem 4. If γ' is continuous on [a, b] then γ is rectifiable and $L(\gamma) = \int_a^b \|\gamma'(t)\| dt$.

Proof. Let M be such that $\|\gamma'\| \leq M$ on [a, b]. M exists because γ' is continuous. Thus by the MVT $\|\Delta\gamma_i\| \leq M(b-a)$. This means that $L(\gamma) < \infty$. Thus the curve is rectifiable.

Each γ'_i is continuous on a compact set [a, b] and is thus uniformly continuous. So given a $\delta > 0$ there exists an N_i such that $|t - s| < \frac{b-a}{N_i}$ implies that $|(\gamma')^2(t_i) - (\gamma')^2(s_i)| < \delta$. Choose $N > max(N_i)$ for all *i*. Assume that the partition P is $x_0 = a \le x_1 = a + \frac{b-a}{N} \dots$ Also, choose δ so that $\sqrt{x} - \sqrt{x_0} < \epsilon$ whenever $|x - x_0| < \delta k$. By the usual MVT, for each γ_i there exists a $c_{i,i}$ in $[x_{i-i}, x_i]$ s.t. $\Delta \gamma_i = \gamma'(c_{i,i})\Delta t_i$.

Therefore
$$\Lambda(P,\gamma) = \sum_{j} \|\Delta_{j}\gamma\| = \sum_{j} \sqrt{\sum_{i} \gamma'(c_{i,j})^{2}} \frac{b-a}{N}$$
. Let $v_{j} = \frac{x_{j-1}+x_{j}}{2}$. Thus $|\Lambda(P,\gamma) - \sum_{j} \|\gamma'(v_{j})\| \frac{b-a}{N}| < \epsilon(b-a)$. As $N \to \infty$, we see that $\sum \|\gamma'(v_{j})\| \frac{b-a}{N} \to \int_{a}^{b} \|\gamma'\| dt$. Thus make $N \to \infty$ and then $\epsilon \to 0$ to be done. \Box

Here is a famous example of a non-rectifiable curve. I will not discuss it rigorously though. This is the Koch snowflake curve :

Take an equilateral triangle of side 1. Trisect each of its sides, remove the middle pieces, and instead replace it with two sides of an equilateral triangle of side 1/3. Continue this process. So each time, the perimeter P_n of the resulting curve C_n is 4/3 of that of C_{n-1} . Thus the perimeter runs off to infinity. The "limit" (in some appropriate sense) of C_n is the so-called Koch snowflake curve. It is clearly not rectifiable. For fun, let's calculate the area of the Koch snowflake curve. Note that to A_{n-1} we add the area of an equilateral triangle for every line segment. Suppose the number of line segments after n-1 iterations is k_{n-1} . Then $k_n = 4k_{n-1}$ with $k_0 = 3$. Thus $k_n = 4^n 3$. The number of new triangles after n iterations is K_{n-1} . The length of every segment after n iterations is $\frac{1}{3^n}$. Thus $A_n = A_{n-1} + 4^{n-1} \times 3 \times \frac{3}{4} \frac{1}{9^n}$. Therefore $A = \frac{\sqrt{3}}{4} \frac{8}{5}$. So the area is finite but the perimeter is infinite!